Abstract:
The invention relates to a guide block and a method for embodying divisions on a slide plane (22) of a guide block blank (47). The divisions (25) are applied to the guide block blank (47), then a base surface (26) for the slide plane (22) on the guide block blank (47) is pre-prepared. After introduction of a material (41) for application to the base surface (26), a local fusion of the introduced material (41) is carried out, by means of a non-contact heat input (35). Particular forms for the divisions (25) are generated by means of moving the guide block blank (47) and/or a beam (35) of the heat input (34) relative to each other. Finally the support surfaces of the molten material (41) are levelled to generate a planar support surface for the slide plane (22).
Abstract:
A porous bronze 1b and a resin 1c impregnated in pores of the porous bronze 1b formed on a backing metal 1a constitute a bearing 1. At a surface to be brought into contact with a crank shaft 5, porous bronze 1b and resin 1c are sparsely exposed: Ratio of area of exposure of porous bronze 1b at the contact surface 1d is at least 5% and at most 60%. Thus a bearing for a refrigerating compressor having high seizure resistance at the time of boundary lubrication and having small amount of wear caused by sliding as well as a refrigerating compressor employing the same can be obtained.
Abstract:
Disclosed is a radial piston pump wherein the fluid to be compressed is drawn through the piston, which can be driven by an eccentric shaft. Piston inlet opening axis is displaced in relation to a centre plane of the drive shaft, parallel to the pistonaxis, so that one of the circumferential edges of the eccentric can be used to control the suction opening.
Abstract:
An improved axial-piston energy converting device is provided by utilizing a thin ceramic wear plate insert, having a typical thickness of only about .005 to .040 inches in thickness, as a cam surface secured by atmospheric pressure to an underlying support surface of a steel cam plate support structure. Attachment of the wear plate to the cam plate supporting surface is accomplished by polishing both a supporting surface of the cam plate, and a mating surface of the wear plate to a very smooth finish, and wiping a thin film of a fluid such as oil onto one of the polished surfaces prior to placing the wear plate onto the supporting surface. The highly polished surface, together with the light film of oil, results in a joint that is essentially air tight. Atmospheric pressure acting on the cam surface of the wear plate serves to hold the wear plate tightly in place on the support surface in the same manner that a pair of Johansson blocks are held together if their highly polished surfaces are mated.
Abstract:
A pump configured so that tools are not required to remove the pump head (12) and disassemble the plunger (30). A single large hand operated knob or head nut (60) facilitates tool-less pump head removal. The pump head is guided into position in a manifold (54) and held in place by the hand knob. The manifold is designed to receive all the external fluidic connections made to the pump head. Fluid paths to the pump head have been replaced with miniature face seals (56) which facilitate high pressure sealing between the pump head and manifold. Low pressure tubing seals reside in a seal wash chamber (50) or housing and are not attached to the head, eliminating the need for tooling to disconnect them during pump head removal. A tool-less plunger mechanism includes a nutcap assembly having a plunger socket receiving a plunger assembly including a sapphire plunger fixed to a plunger holder ball accommodated by the socket. The plunger assembly is captured within the socket by a plurality of cams. The cams are spring loaded to rotate and collapse onto the plunger holder ball (32) pulling the plunger assembly tightly into the socket. A restricting cone is actuated to rotate the cams away from the plunger holder ball for release and removal of the plunger assembly.
Abstract:
An engine/pump having a crank shaft (1) with a shaft axis (1A) and a crank axis (2A) oblique to the shaft axis (1A) which intersect with each other at X, piston/cylinder assemblies (6, 12) to rotate about the shaft axis (1A) and having a reciprocal axis between its top dead centre and bottom dead centre, the reciprocal axis midway between TDC and BDC being normal to a line projected from X, piston control means (3) to rotate about said crank axis (2A), connection means for each piston (6) from said piston control means (3), to allow reciprocal movement of the pistons (6) within the cylinders (12) as the assemblies (6, 12) rotate about the shaft axis (1A), cylinder head (5) which holds the cylinders (12) in an array, the head (5) including at least one port per cylinder, and ported means (13) relative to which said cylinder head (5) moves sealably to allow timed to the reciprocal movement of each piston (6) in its cylinder (12) and the rotational position, the opening and closing of each cylinder (12). Each cylinder (12) is indexed at a predetermined rate to the relative rotation of the crankshaft (1) through gearing (10). An alternative embodiment of the invention is also disclosed as shown in the figures.