Abstract:
A linked transport mechanism and method that uses a single source of motive force to synchronously position multiple displaceable sensors of a shape-measuring assembly onto a roll received in a roll grinding machine. At least two sensors (28, 29) are mounted on linear slides on at least one measuring arm (1). The complete shape-measuring assembly includes at least three sensors (27, 28, 29) or measuring points to allow the calculation of the cross-sectional shape of the roll and the extraneous error movement of the roll. At least one measuring arm is connected to a linear guide (4) of the frame (3). The linear motor is connected between the frame and the measuring arms. The linked transport mechanism assures the synchronous accurate positioning of the sensors, each at a fixed angle through the roll center, over the entire range of roll diameters that the grinding machine may receive.
Abstract:
An adjustable gage comprises a centerline hub (22) and a swing gage (24). The hub (22) includes a body (26) with position jaws (215) adjustably attached thereto, and a central post (28). The gage (24) comprises a pair of parallel slide bars and front and rear blocks slidable along the slide bars. A movable, spring-biased probe (46) is slidably connected to the front block via a rail and carriage bearing apparatus. The probe (46) is operably connected to a probe-movement indicator (62). The rear block has a fixed probe (48). Both probes have end roller bearings (42,44). In use, the ring shaped part (32) to be measured is placed within the position jaws (215), previously adjusted to the approximate inner or outer diameter of the part. Then, the gage (24) is placed over the post (28), with the roller bearings (42,44) coming into contact with the part (32), and the gage (24) is rotated. The probes (46,48) track along the part, with any variances in part diameter showing up on the indicator (62).
Abstract:
An adjustable abutment (14) is automatically brought into contact with the center of the face (6) of a part to be checked (5) thus eliminating all periodic lateral movement of such part (5).
Abstract:
Improvements in a rotor runout and concentricity jig that mimics the runout and/or concentricity of an axle of a vehicle that can be transferred to a rotor. The jig uses discs with high and low points and/or two eccentric tubes. The parts can be adjusted from in-phase to out of phase to duplicate the characteristics of the axle. The adjustments have incremental detents that correspond with the imperfections of the axle to rotor. The position of the rotor is marked on the axle and the rotor to ensure that the rotor is placed onto the axle in the exact same location. The axle and the rotor are cleaned, reinstalled and measured for runout and concentricity. The rotor is then removed and inaccuracies for runout and/or concentricity are transferred to the jig for machining the rotor.
Abstract:
A roundness measuring machine includes: a base; a table rotatable relative to the base; a probe configured to scan a surface of a workpiece mounted on the table; a motor configured to rotate the table; and a control device configured to control a rotation of the motor. The control device includes: a starting current detector configured to detect a starting current of the motor; and an acceleration/deceleration time setting unit configured to detect at least one of acceleration time and deceleration time for the motor in accordance with the starting current. The roundness measuring machine can suitably set the acceleration time and the deceleration time for the motor corresponding to the inertia moment of the workpiece mounted on the table.
Abstract:
A sensor is placed on a plate lowered into the hollow of the shaft and guided by taut wires between a lower attachment device and an upper motorized winder. The deformations, responsible for measurement errors and caused either by static deformations, produced by the weight or poor construction of the apparatus, or by vibrations, are to a large extent eliminated.
Abstract:
A spherical-form measuring apparatus includes a turntable 5, a holding unit 10 for holding the sphere 20, and a probe 6 for measuring a contour of a sphere part 22 of the sphere 20. The holding unit 10 includes a base part 12, a vertical holding part 14 and an inclined holding part 16 which are placed at separate positions on the base part 12. The vertical holding part 14 holds the stem part 24 of the sphere 20 with it set in a direction perpendicular to the turntable 5. The inclined holding part 16 holds the stem part 24 with it set in a direction at an angle. The vertical and inclined holding part 14, 16 are disposed such that their axial lines meet at an intersection point P and such that the distance from the point P to the vertical holding part 14 agrees with the distance from the point P to the inclined holding part 16.
Abstract:
A sensor is placed on a plate lowered into the hollow of the shaft and guided by taut wires between a lower attachment device and an upper motorised winder. The deformations, responsible for measurement errors and caused either by static deformations, produced by the weight or poor construction of the apparatus, or by vibrations, are to a large extent eliminated.
Abstract:
A circumference measuring gauge for measuring an item is shown and described. The circumference measuring gauge may include a base, a fixture displaceably positioned on the base, the fixture capable of securing the item, and a measuring member having first and second ends, the first end fixed to the base and the second end fixed to the fixture, where the measuring member circumscribes the item. The circumference measuring gauge may also include a biasing member secured to the fixture, wherein the biasing member applies a predetermined force to the measuring member.
Abstract:
A calibration device for gauges for the measurement of the geometrical characteristics of cylinders, such as the diameter, profile, rotundity and eccentricity errors, wherein such gauges include a pair of movable opposing arms equipped with feelers or sensors at their free ends, includes a pair of abutments reciprocally approachable and/or withdrawable by means of motors until a sample measure is obtained, as desired, within the measuring range of the gauge, on which the calibration device is assembled, revealed by means of measuring means cooperating with the abutments, such that consequently the feelers or sensors are respectively abutted or approached to the abutments to reveal the sample measure.