Abstract:
Reflectance systems and methods are described that under-fill the collection fiber of a host spectrometer both spatially and angularly. The under-filled collection fiber produces a response of fiber-based spectrometers that is relatively insensitive to sample shape and position.
Abstract:
First, a box 5 molded from a resin is prepared such as to have a rectangular parallelepiped outer form with a pair of grooves on the bottom face and a semispherical recess 9. Subsequently, a photocurable resin agent 27 is applied to a bottom area 12 of the recess 10 in the box 5. Then, while a light transmitting mold 28 having a bottom face formed with a plurality of grating grooves arranged in a row along a predetermined direction is pressed against the applied resin agent 27, the resin agent 27 is cured by irradiation with light, so as to provide the area 12 in the recess 10 with the grating 29 formed with a plurality of grating grooves. Next, Al, Au, or the like is vapor-deposited so as to cover the grating 29, thereby forming a reflecting film 15. Then, a photodetector 4 is accommodated in a package 2. This can easily manufacture a highly reliable spectrometer.
Abstract:
A spectrometer 1, in which a spectroscopic unit 3 spectrally resolves and reflects light L1 having entered the inside of a package 2 while a photodetector 4 detects reflected light L2, comprises a package 2 accommodating the photodetector 4 therein. The package 2 has a semispherical recess 10, while the recess 10 has a bottom face formed with an area 12 having a plurality of grating grooves 14 arranged in a row along a predetermined direction and an area 13 surrounding the area 12. The areas 12 and 13 are continuous with each other and formed on the same curved surface. This can inhibit the grating grooves 14 from shifting their positions even when distortions are generated in the package 2.
Abstract:
We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
Abstract:
The invention is an optical method and apparatus for measuring the temperature of semiconductor substrates in real-time, during thin film growth and wafer processing. Utilizing the nearly linear dependence of the interband optical absorption edge on temperature, the present method and apparatus result in highly accurate measurement of the absorption edge in diffuse reflectance and transmission geometry, in real time, with sufficient accuracy and sensitivity to enable closed loop temperature control of wafers during film growth and processing. The apparatus operates across a wide range of temperatures covering all of the required range for common semiconductor substrates.
Abstract:
A cylindrical illumination confocal spectroscopy system has a fluidic device having a fluid channel defined therein, an objective lens unit arranged proximate the fluidic device, an illumination system in optical communication with the objective lens unit to provide light to illuminate a sample through the objective lens unit, and a detection system in optical communication with the objective lens unit to receive at least a portion of light that passes through the objective lens unit from the sample. The illumination system includes a beam-shaping lens unit constructed and arranged to provide a substantially planar illumination beam that subtends across, and is longer than, a lateral dimension of the fluid channel, the substantially planar illumination beam having a diffraction limited thickness in a direction substantially orthogonal to the lateral dimension of the fluid channel. The substantially planar illumination beam incident upon the fluidic device has a width that is substantially longer than the lateral dimension of the fluid channel such that the substantially planar illumination beam has an illumination intensity that is uniform across the lateral dimension of the fluid channel to within ±10%. The detection system comprises an aperture stop defining a substantially rectangular aperture having a longitudinal dimension and a transverse dimension. The aperture stop is arranged so that the substantially rectangular aperture is confocal with an illuminated portion of the fluid channel such that the transverse dimension of the substantially rectangular aperture substantially subtends the lateral dimension of the fluid channel without extending substantially beyond the fluid channel and allows light to pass from only a uniform excitation region while occluding light from outside the uniform excitation region, and the lateral dimension of the substantially rectangular aperture substantially matches the diffraction limited thickness of the planar illumination beam.
Abstract:
A Raman spectrometry assembly includes a Raman spectrometer having a laser light source and a Raman signal analyzer, an interface module comprising a housing which is connectable to and disconnectable from the spectrometer, and a fiber optic assembly which is connectable to and disconnectable from the interface module, the fiber optic assembly including optical fibers and a probe head at a distal end thereof for disposition adjacent a specimen to be tested, the optical fibers extending from the probe head and adapted to extend to the interface module.
Abstract:
The invention is an optical method and apparatus for measuring the temperature of semiconductor substrates in real-time, during thin film growth and wafer processing. Utilizing the nearly linear dependence of the interband optical absorption edge on temperature, the present method and apparatus result in highly accurate measurement of the absorption edge in diffuse reflectance and transmission geometry, in real time, with sufficient accuracy and sensitivity to enable closed loop temperature control of wafers during film growth and processing. The apparatus operates across a wide range of temperatures covering all of the required range for common semiconductor substrates.
Abstract:
The invention is directed to an arrangement for detecting coatings which are arranged on surfaces of structural component parts or objects and for determining the chemical characteristics and surface properties of these coatings. It comprises a light source for illuminating the coating to be analyzed on the surface of the structural component part and means for imaging the light source on an entrance slit over the surface of the coating to be analyzed. The entrance slit is imaged in a wavelength-dependent manner on a two-dimensional detector unit by a grating. An evaluating unit which is electrically connected to the detector unit serves to evaluate and process the signals supplied by the exposed detector elements of the detector unit.
Abstract:
The disclosure relates generally to methods and apparatus for using a fiber array spectral translator-based (“FAST”) spectroscopic system for performing spectral unmixing of a mixture containing multiple polymorphs. In an embodiment, a first spectrum of a mixture containing polymorphs of a compound is obtained using a photon detector and a fiber array spectral translator having plural fibers. A set of second spectra is provided where each spectrum of the set of second spectra may be representative of a different polymorph of the compound. The first spectrum and the set of second spectra may be compared, and based on the comparison, the presence of one or more polymorphs in the mixture may be determined.