Abstract:
A structure and driving method of a plasma display panel is provided, in which an amount of priming particles within a discharge cell increases to reduce discharge lag of address discharge. The structure of the plasma display panel includes a plurality of sustain electrode pairs successively formed on an upper electrode, a plurality of common electrodes formed one by one between a pair of the sustain electrodes, and a dielectric layer formed on the substrate to deposit the sustain electrodes and the common electrodes. The method for driving the plasma display panel includes the steps of applying a common pulse, which is periodically turned on/off, to the common electrodes, applying a scan pulse to one of a pair of the sustain electrodes, and applying an address pulse to the address electrodes when the scan pulse is applied to the one sustain electrode. Thus, since discharge conditions within the discharge cell can be improved, discharge lag less occurs than the related art plasma display panel.
Abstract:
A plasma display panel can stabilize address properties. A front substrate (1) and a back substrate (2) are disposed to face each other, and a discharge space (3) is formed and partitioned by barrier ribs (11) so as to form priming discharge cells (16) and main discharge cells (12). Forming priming electrodes (15) onto a dielectric layer (17) in the priming discharge cells (16) can secure the isolation voltage between data electrodes (10) and the priming electrodes (15), and can also secure the generation of a priming discharge prior to a main discharge.
Abstract:
In a flat type plasma discharge display device which includes a discharge sustaining electrode group (X) having first and second discharge sustaining electrodes and an address electrode group (Y) having address electrodes, a plurality of plasma discharge parts (P) are formed for one discharge start part thereof, and the plasma discharge parts relating to one discharge start part are driven sequentially or simultaneously to emit a light, whereby it becomes possible that plasma display of high definition and high luminance is performed in the flat type plasma discharge display device.
Abstract:
A plasma display panel and a driving method thereof that is capable of improving a discharge efficiency as well as preventing a crosstalk. In the panel, an address electrode is included in each discharge cell making a unit pixel of the plasma display panel. A plurality of second sustain electrodes are positioned at each periphery of the discharge cell in a direction crossing the address electrode to receive a second sustaining pulse. At least one of first sustain electrode is positioned at the center of the discharge cell in a direction crossing the address electrode to receive a first sustaining pulse applied alternately with respect to the second sustaining pulse.
Abstract:
A method of driving a plasma display panel to improve display brightness and luminescent efficiency. In the sustain periods, the same driving signal is sent to the sustain electrode X as well as the address electrode Ai at the same time to achieve the desired volume discharge effect. In addition, the structure of PDPs is modified to raise firing voltages between these electrodes, preventing erasure of the data written in the address periods.
Abstract:
A plasma display panel having an active area and a non-display area positioned at the outside of the active area wherein dummy electrodes positioned within said non-display area have a narrower gap between electrodes than sustain electrode pairs positioned within said active area. Accordingly, the plasma display panel has a narrower gap between electrodes of the dummy electrodes than the sustain electrode pair within the active area and has a narrow electrode width thereof, so that it can easily generate a discharge between the dummy electrodes well and reduce a generation of electric charges accumulated onto the dummy electrodes. As a result, the plasma display panel can prevent an abnormal discharge to improve a picture quality.
Abstract:
At least one pair of stripe shaped second discharge maintaining electrodes are formed between a second dielectric layer and a first dielectric layer so as to correspond to a first discharge maintaining electrodes, a second discharge maintaining electrodes have an electric resistance lower than that of the first discharge maintaining electrodes, at least one pair of bus electrodes are overlapped to the second discharge maintaining electrodes along a direction of length of two edges adjacent to each other of the pair of the first discharge maintaining electrodes.
Abstract:
A plasma display panel and a driving method thereof is adaptive for realizing high efficiency. In the plasma display panel, a sustaining electrode pair and an address electrode are included in each discharge cell. A first dielectric layer covers the sustaining electrode pair. To induce a discharge of the sustaining electrode pair, a floating electrode pair is formed parallel thereto on the first dielectric layer. A second dielectric layer and a protective film cover the floating electrode pair. Accordingly, two auxiliary electrodes are provided between the sustaining electrode pair so that when a voltage is applied to the sustaining electrode pair, the voltage is driven into the auxiliary electrodes. A primary discharge is thus induced between said auxiliary electrodes at a low voltage and therefore a long-path discharge is induced between the sustaining electrode pair at a low voltage, even though they are distanced apart from each other.
Abstract:
A plasma display panel that is capable of improving the discharge and light-emission efficiencies and the brightness. In the panel, a sustaining electrode pair is formed on an upper substrate in such a manner to be positioned at the edges of a discharge cell. A trigger electrode pair is positioned between the sustaining electrode pair to cause a trigger discharge for deriving a sustaining discharge. Dielectric layers are formed on the sustaining electrode pair and the trigger electrode pair to have a different thickness.
Abstract:
A plasma flat-panel display comprising a hermetically sealed gas filled enclosure. The enclosure includes a top glass substrate having a plurality of parallel sustaining electrode pairs deposited upon an interior surface thereof and at least one auxiliary electrode associated with each pair of sustaining electrodes deposited upon the interior surface between the associated sustaining electrodes. The enclosure also includes a thin dielectric film covering the sustaining and auxiliary electrodes and a bottom glass substrate separated from the top glass substrate. The bottom substrate includes a plurality of alternating barrier ribs and microgrooves. An address electrode is associated with each microgroove and a phosphor is deposited over a portion of each address electrode. A first voltage is applied to the auxiliary electrode to initiate a discharge between the auxiliary electrode and a sustaining electrode. A second voltage, that is greater than the first voltage is applied to the sustaining electrodes and causes the discharge to extend between the sustaining electrodes.