Abstract:
A wireless telecommunications system includes a central station which communicates with a plurality of subscriber stations served by the central station. The central station is connectable to a public switched telephone network under a multiplexed multi-channel telecommunications protocol having a plural number of telephone line channels and a signalling channel. Each subscriber station is connectable to a predetermined number of telephone lines, where the plural number is greater than the predetermined number. The central station is connectable to each subscriber station via a wireless link under a wireless link protocol having the predetermined number of telephone line channels and a signalling channel. The central station includes a central protocol interface for converting between the multiplexed multi-channel telecommunications protocol and the wireless link protocol for each wireless link. The subscriber station includes a subscriber protocol interface for converting between said wireless link protocol and said multiplexed multi-channel telecommunications protocol with said predetermined number of telephone line channels and an associated portion of said signalling channel active. By converting an incoming multiplexed multi-channel (multiline) protocol to a wireless link protocol, and then reconverting the wireless link protocol to a multiline protocol at the other end, it is possible to provide for selective communication in accordance with the multiline protocol, despite the limited bandwidth available.
Abstract:
A wireless telecommunications system includes a central station communicates with a plurality of subscriber stations served by the central station. The central station is connectable to a telecommunications network under a multiplexed multi-channel digital data telecommunications protocol having a plural number of data channels. Each subscriber station provides a line connection for carrying a predetermined number of digital data channels, where the plural number is greater than the predetermined number. The central station is connectable to each subscriber station via a wireless link under a wireless link protocol having the predetermined number of data channels. The central station includes a central protocol interface for converting between the multi-channel telecommunications protocol and the wireless link protocol for each wireless link. The subscriber station includes a subscriber protocol interface for converting between the wireless link protocol and the multiplexed multi-channel digital data telecommunications protocol with the predetermined number of digital data channels active. By converting an incoming multi-channel digital data protocol to a wireless link protocol, and then reconverting the wireless link protocol to a multi-channel digital data protocol at the other end, it is possible to provide for selective communication in accordance with the multi-channel digital data protocol, despite the limited bandwith available.
Abstract:
A wireless telecommunications system (1) includes a central terminal (10) for transmitting and receiving radio frequency signals to and from a subscriber terminal (20). A downlink communication path is established from a transmitter (200) of the central terminal (10) to a receiver (202) of the subscriber terminal (20). A downlink signal (212) is transmitted from the transmitter (200) to the receiver (202) during setup and operation of the wireless telecommunications system (1). The receiver (202) of the subscriber terminal (20) compares a code and phase of a master code sequence in the downlink signal (212) to a code and phase of a slave code sequence of the receiver (202). The receiver (202) adjusts the phase of the slave code sequence until a match is obtained with the master code sequence. Matching of the slave code sequence to the master code sequence facilitates establishment of the downlink communication path.
Abstract:
In a method of interference mitigation in a multi user detection capable radio base station in a communication system, which radio base station comprises a set of confined detection modules, at least one of which is capable of handling multiple user connections, first and at least a second subset of detection modules are formed from said set, wherein the second set comprises at least one interference mitigation capable detection module. Interference information from the first subset is communicated to the second subset, interference originating in user connections of the first subset are then mitigated from the user connections of the second subset. Subsequently, interference is mutually mitigated between the connections within the interference mitigation capable detection module.
Abstract:
In a synchronization processing circuit in a wireless communication system, a correlation operation unit is designed to have a parallel structure which can be restructured to improve flexibility in order to cope with various synchronization processings in a plurality of radio systems.The synchronization processing circuit in the wireless communication system comprises a plurality of correlation operation modules 31 through 3N that execute correlation operation, each of which correlation operation modules includes a plurality of correlators 60, a plurality of shift registers 50 for shifting a correlation code, an interface which transfers a shifted correlation code to an adjacent correlation operation unit for timing correlation processing, and a correlation code selection unit 40 which selects an externally and individually applied correlation code for code correlation processing and a correlation code transferred from an adjacent correlation operation unit as the correlation code.
Abstract:
A configurable all-digital coherent demodulator system for spread spectrum digital communications is disclosed herein. The demodulator system includes an extended and long code demodulator (ELCD) coupled to a traffic channel demodulator (TCD) and a parameter estimator (PE). The demodulator also includes a pilot assisted correction device (PACD) that is coupled to the PE and the TCD. The ELCD provides a code-demodulated signal to the TCD and the PE. In turn, the TCD provides a demodulated output data signal to the PE. The PACD corrects the phase error of the demodulated output data based on an error estimate that is fed forward from the PE. Accumulation operations in the ELCD, TCD, and PE are all programmable. Similarly, a phase delay in the PACD is also programmable to provide synchronization with the error estimate from the PE.
Abstract:
A baseband processing module includes an RX interface, a rake receiver combiner module, and may include additional components. The RX interface receives the baseband signals from an RF front end and creates baseband RX signal samples there from. The rake receiver combiner module includes control logic, an input buffer, a rake despreader module, and an output buffer. The rake despreader module is operable to despread the baseband RX signal samples in a time divided fashion to produce channel symbols including pilot channel symbols and physical channel symbols.
Abstract:
A system acquisition module and corresponding method for facilitating PN code searching which has a PN sequence generator configurable to generate a plurality of PN sequences. The module and method also includes computational units configurable to correlate each received signal sample of a plurality of received signal samples with a corresponding PN sequence of the plurality of PN sequences, and further configurable to provide other hardware resources. A number of computational units from the plurality of computational units are selectively configured to correlate the received signal samples with the PN sequences—the number depending upon availability of the plurality of computational units from providing the other hardware resources. In another embodiment, a communication device having a system acquisition function is provided which includes the system acquisition module and a receiver configured to receive signals, where a plurality of configurable computational units are selectively configurable to implement the PN sequence generator.
Abstract:
A joint detection system and associated methods are provided. The joint detection system is configured to perform joint detection of received signals and includes a joint detector accelerator and a programmable digital signal processor (DSP). The joint detector accelerator is configured to perform front-end processing of first data inputted to the joint detector accelerator and output second data resulting from the front-end processing. The joint detector accelerator is further configured to perform back-end processing using at least third data inputted to the joint detector accelerator. The programmable DSP is coupled to the joint detector accelerator, and the programmable DSP is programmed to perform at least one intermediate processing operation using the second data outputted by the joint detector accelerator. The programmable DSP is further programmed to output the third data resulting from the intermediate processing operation to the joint detector accelerator.
Abstract:
Searcher hardware is multiplexed to perform simultaneous searches in either an IS-95 CDMA mode or a GPS mode. In the IS-95 mode, the search hardware is time-multiplexed into a number of searcher time slices, each of which can generate a PN sequence to despread a data sequence. In the GPS mode, the search hardware is configured as a number of distinct GPS channels, each of which can generate a Gold code sequence for tracking a GPS signal from a particular GPS satellite. This configuration allows the searcher to perform multiple GPS signal searches simultaneously. Signal searching in both IS-95 and GPS modes is performed at significantly higher speeds compared to conventional searcher hardware. Moreover, the search hardware can be dynamically configured to operate in either the IS-95 or the GPS mode, eliminating the need for dedicated circuitry for each mode of operation.