Abstract:
A scanning device (10) for forming a scanned electronic image (54) includes an imaging sensor (22) and at least one navigation sensor (24 and 26). The imaging sensor is a linear array of sensor elements, with a two-dimensional navigation sensor array at each end. The scanning device has three degrees of freedom, since position information from the navigation sensors allows manipulation of an image signal from the imaging sensor to reduce distortion artifacts caused by curvilinear scanning. Acceptable sources of the position information include printed matter and contrast variations dictated by variations in the inherent structure-related properties (64) of the medium (14) on which the scanned image is formed. Illumination for optimal operation of the navigation system may be introduced at a grazing angle (30) in some applications or in the normal to a plane of the original in other applications.
Abstract:
An information processing apparatus includes a controller and a display. The controller is configured to (a) acquire first image data, (b) acquire multiple sets of image data, each set of image data corresponding to a reading of an object by a scanner, and (c) generate second image data corresponding to the object based on the sets image data. The display is configured to display both (a) a first image based on the first image data and (b) a second image based on the second image data, the first image being superimposed on the second image.
Abstract:
An image capture unit and computer readable medium used in combination therewith. The image capture unit includes an image capturing sensor, a visual display, an instance of the computer readable medium, and circuitry for integrating functionalities thereof. The computer readable medium causes sensor data received from the image capturing sensor to be processed. The sensor data includes a plurality of image tiles and position indicating data defining a respective relative position of each one of each image tiles. Each one of each image tiles includes data representing a discrete portion of visual content. The computer readable medium causes a feedback image be displayed on the visual display. Displaying the feedback image includes correlate the relative position of each one of each image tiles with at least one other image tile that has been previously generated and displayed.
Abstract:
A viewing aid includes a camera, a viewing surface within a field of view of the camera, a memory, a display, and software programmed to track a tracking element within the field of view. Viewing material is placed on the viewing surface. The camera, viewing surface, and material all remain substantially stationary. The camera captures and stores an initial image of the material in the memory. The software then tracks the location of a tracking element within the field of view then maps the location to a portion of the initial image in memory using an X-Y coordinate system, and/or identifies character elements of the material adjacent the tracking element then maps the character elements to corresponding character elements of the initial image in memory. An enhanced image is then displayed on the display corresponding to the mapped portion of the initial image.
Abstract:
An image processing apparatus obtains image data by photographing a document which is put on a document plate. The apparatus includes an obtaining unit and a correction unit. The obtaining unit photographs the document plate and obtains calibration image data. The correction unit uses the calibration image data obtained by the obtaining unit, so as to correct the image data obtained by photographing the document which is put on the document plate.
Abstract:
A method and apparatus for performing an image forming job by maintaining a cover, which covers a scan area and has adjustable transparency, in a transparent state until a job for acquiring image data of a scan object starts in an image forming apparatus. If the job for acquiring the image data of the scan object positioned in the scan area starts, the image forming apparatus converts the cover into an opaque state and acquires the image data of the scan object. If the job for acquiring the image data of the scan object is ended, the image forming apparatus reconverts the cover into a transparent state. Therefore, efficiency of a job for acquiring image data of a scan object is improved.
Abstract:
A self-contained mobile optical scanning system having an image scanner contained within a hollow inside space defined by mated engagement of an upper housing and a lower housing having corresponding upper and lower transparent windows having reduced margins and a scanning control interface rotatable through the enclosed space which allows scanning through the upper transparent window in either the upright or inverted condition by alignment of viewable indicator marks and overlap indicators in relation to an article which allows stitched alignment of a plurality of scanning cycles to generate images embeddable with metadata or data files.
Abstract:
Disclosed is a magnification device for use by blind and/or low vision individuals. The device includes an X-Y table upon which an item to be magnified can be placed. A stationary camera arm and a pivotal monitor arm are oriented over the X-Y table. The monitor arm includes a video monitor pivotally mounted at its distal end. The camera arm also includes two laterally disposed lighting arms. A series of controls are provided along a lower edge of the monitor via a mounting bracket.
Abstract:
An image capture unit and computer readable medium used in combination therewith is disclosed. In a preferred embodiment, the image capture unit includes an image capturing sensor, a visual display, an instance of the computer readable medium, and circuitry for integrating functionalities thereof. The computer readable medium causes sensor data received from the image capturing sensor to be processed. The sensor data includes a plurality of image tiles and position indicating data defining a respective relative position of each one of each image tiles. Each one of each image tiles includes data representing a discrete portion of visual content. The computer readable medium causes a feedback image be displayed on the visual display. Displaying the feedback image includes correlate the relative position of each one of each image tiles with at least one other image tile that has previously generated and displayed.