Abstract:
This invention relates to a process for the preparation of triazine carbamates by reacting a mixture of an aminotriazine A having at least two amino groups per molecule, an organic carbonate C, and a base B selected from the group consisting of alkoxides, and arylalkoxides of metals M, which may be alkali or earth alkali metals, and a solvent S which is a monohydric alcohol solvent R2OH or a mixture of solvents that comprises a monohydric alcohol R2OH, and a monohydric alcohol R3OH, or a mixture of solvents that comprises a monohydric alcohol R2OH with a further solvent selected from the group consisting of ether, alcohol, and hydrocarbon solvents, and adding to the products of the said reaction, an acid or a solution of an acid in a solvent.
Abstract:
This invention relates to coating compositions comprising at least one aminoplast crosslinker resin A, binder resins B that have active hydrogen functionality, and a catalyst composition C, wherein the catalyst composition C is a mixture of an organic sulfonic acid C1, and an amine C2 which may be primary, secondary, or tertiary, and which must have a pKa value of not more than 10, and preferably not less than 4, a process for the preparation thereof, and to a method of use thereof.
Abstract:
This invention relates to coating compositions comprising at least one aminoplast crosslinker resin A, binder resins B that have active hydrogen functionality, and a catalyst composition C, wherein the catalyst composition C is a mixture of an organic sulfonic acid C1, and an amine C2 which may be primary, secondary, or tertiary, and which must have a pKa value of not more than 10, and preferably not less than 4, a process for the preparation thereof, and to a method of use thereof.
Abstract:
This invention relates to a process for the preparation of triazine carbamates by reacting a mixture of an aminotriazine A having at least two amino groups per molecule, an organic carbonate C, and a base B selected from the group consisting of alkoxides, and arylalkoxides of metals M, which may be alkali or earth alkali metals, and a solvent S which is a monohydric alcohol solvent R2OH or a mixture of solvents that comprises a monohydric alcohol R2OH, and a monohydric alcohol R3OH, or a mixture of solvents that comprises a monohydric alcohol R2OH with a further solvent selected from the group consisting of ether, alcohol, and hydrocarbon solvents, and adding to the products of the said reaction, an acid or a solution of an acid in a solvent.
Abstract:
Disclosed are one-component compositions that include: (1) an isocyanate-functional urethane acrylate and (2) a polyisocyanate containing allophanate and/or uretdione groups, wherein the one-component composition has a viscosity of less than or equal to about 800 mPa·s and an isocyanate content of greater than about 5% by weight, based on the weight of the one-component composition. Also disclosed are circuit boards and electronic components that are coated with such compositions.
Abstract:
The present invention relates to a method for producing matt and scratch-resistant coatings that takes place under exposure to actinic radiation on coating systems containing activated double bonds under radical polymerization.
Abstract:
Disclosed are one-component compositions that include: (1) an isocyanate-functional urethane acrylate and (2) a polyisocyanate containing allophanate and/or uretdione groups, wherein the one-component composition has a viscosity of less than or equal to about 500 mPas and an isocyanate content of greater than about 5% by weight, based on the weight of the one-component composition. Also disclosed are circuit boards and electronic components that are coated with such compositions.