Abstract:
Oxidizable contaminants in water are destroyed quickly and efficiently by exposing a contaminated water flow to oxidizing conditions under pressure. Specifically, ozone generated from oxygen and hydrogen peroxide are injected into the water flow in at least one, and preferably more than one, high intensity mixing/reaction stage. The ozone and hydrogen peroxide are injected at velocities and directions approximately matching those of the contaminated water flow. High intensity mixing under pressure facilitates rapid and complete oxidation of the contaminants with minimal stripping of volatile contaminants and waste of undissolved ozone. Residual ozone levels after high intensity mixing are carefully monitored and minimized by adjusting the injection of hydrogen peroxide and ozone in order to suppress the formation of bromate.
Abstract:
Oxidizable contaminants in water are destroyed rapidly and efficiently by exposing the water to oxidizing conditions under pressure. Specifically, a single dose of hydrogen peroxide may be injected into the water, followed by the repeated injection and mixing of low doses of ozone. In each such high intensity mixing/reaction stage, ozone is inject ed at a pressure, velocity, and direction approximately matching that of the contaminated water flow. High intensity mixing under pressure facilitates rapid and complete oxidation of the contaminants with minimal stripping of volatile contaminants and waste of undissolved ozone. Residual ozone levels after high intensity mixing may be carefully monitored and minimized by adjusting the injection of hydrogen peroxide and ozone in order to suppress the formation of bromate. Additional contaminants may be removed by passing the treated water through activated carbon beds.
Abstract:
Oxidizable contaminants in water are destroyed quickly and efficiently by exposing a contaminated water flow to oxidizing conditions under pressure. Specifically, ozone generated from oxygen and hydrogen peroxide are injected into the water flow in at least one, and preferably more than one, high intensity mixing/reaction stage. The ozone and hydrogen peroxide are injected at velocities and directions approximately matching those of the contaminated water flow. High intensity mixing under pressure facilitates rapid and complete oxidation of the contaminants with minimal stripping of volatile contaminants and waste of undissolved ozone. Residual ozone levels after high intensity mixing are carefully monitored and minimized by adjusting the injection of hydrogen peroxide and ozone in order to suppress the formation of bromate.
Abstract:
Oxidizable contaminants in water are destroyed rapidly and efficiently by exposing the water to oxidizing conditions under pressure. Specifically, a single dose of hydrogen peroxide may be injected into the water, followed by the repeated injection and mixing of low doses of ozone. In each such high intensity mixing/reaction stage, ozone is injected at a pressure, velocity, and direction approximately matching that of the contaminated water flow. High intensity mixing under pressure facilitates rapid and complete oxidation of the contaminants with minimal stripping of volatile contaminants and waste of undissolved ozone. Residual ozone levels after high intensity mixing may be carefully monitored and minimized by adjusting the injection of hydrogen peroxide and ozone in order to suppress the formation of bromate. Additional contaminants may be removed by passing the treated water through activated carbon beds.
Abstract:
Devices, systems, and methods relating to continuous flow, single pass membrane biofilm reactors (MBfR) for water treatment are described. The devices, systems, and methods can be used in situ to decontaminate ground water in a well or opening in a ground water table.
Abstract:
An apparatus, system, and method relating to a modular water treatment apparatus that utilizes sidestream injection coupled to static mixing are described. The apparatus, system, and method utilizes ozone, with or without hydrogen peroxide, for effective disinfection and/or decontamination of contaminants present in waste water. The disinfected, decontaminated water is suitable for reuse.
Abstract:
Apparatus, systems, and methods for removal of contaminants in water are described. In particular, apparatus, systems, and methods for the treatment of potable water, for removal of oxidized contaminants, using hollow polyester filaments for sustaining a biofilm are described.
Abstract:
A method for inhibiting formation of hexavalent chromium during oxidative remediation of a contaminated site containing trivalent chromium is described. The method comprises introducing ozone at a first point to the contaminated site, where the ozone is introduced at a first frequency and for a first period of time, and introducing hydrogen peroxide to the contaminated site, where the hydrogen peroxide is introduced at a second frequency and for a second period of time. The first and second frequencies and first and second periods of time are selected to inhibit formation of hexavalent chromium within the site of remediation.