Abstract:
Disclosed herein are synthetic methods of producing silver nanowires with controlled morphology, as well as purifying the same. Also disclosed are coating solutions comprising populations of silver nanowires of certain length and diameter distributions.
Abstract:
A patterned transparent conductor including a conductive layer coated on a substrate is described. More specifically, the transparent conductor has low-visibility patterns.
Abstract:
The present disclosure relates to a method for improving optical qualities of transparent conductive films including a multilayer optical stack and conductive nanowires embedded therein.
Abstract:
The present disclosure relates to OLED and PV devices including transparent electrodes that are formed of conductive nanostructures and methods of improving light out-coupling in OLED and input-coupling in PV devices.
Abstract:
Provided herein is a method of forming a conductive film, the method comprising: providing a coating solution having a plurality of conductive nanostructures and a fluid carrier; moving a web in a machine direction; forming a wet film by depositing the coating solution on the moving web, wherein the wet film has a first dimension extending parallel to the machine direction and a second dimension transverse to the machine direction; applying an air flow across the wet film along the second dimension, whereby at least some of the conductive nanostructures in the wet film are reoriented; and allowing the wet film to dry to provide the conductive film.
Abstract:
A patterned transparent conductor including a conductive layer coated on a substrate is described. More specifically, the transparent conductor can be patterned by screen-printing an acidic etchant formulation on the conductive layer. A screen-printable etchant formulation is also disclosed.
Abstract:
A patterned transparent conductor including a conductive layer coated on a substrate is described. More specifically, the transparent conductor can be patterned by screen-printing an acidic etchant formulation on the conductive layer. A screen-printable etchant formulation is also disclosed.
Abstract:
This disclosure is related to photosensitive ink compositions comprising conductive nanostructures and a photosensitive compound, and method of using the same.
Abstract:
The present disclosure is directed to a transparent conductor for use in touch panel devices having a plurality of nanostructures therein that provides reliable output based on user touch or pen input. To determine if a touch panel is reliable, there is disclosed a method of measuring voltages across the transparent conductor when it is touched. These measured voltages are converted into contact resistances, which are statistically analyzed. A median contact resistance is determined based on the converted contact resistances. The remaining set of converted contact resistances are analyzed to determine if they are within acceptable limits. Acceptable limits may include most of the contact resistances falling within a range, none of the contact resistances exceeding an upper limit, and a difference in contact resistances converted for different users or pens does not exceed a maximum variability.
Abstract:
Disclosed is an electrically conductive feature on a substrate, and methods and compositions for forming the same, wherein the electrically conductive feature includes metallic anisotropic nanostructures and is formed by injetting onto the substrate a coating solution containing the conductive anisotropic nanostructures.