Abstract:
A sandwich structure employs a core sheet including alternating peaks and valleys therein, and at least one outer face sheet including grooves or ribs therein. In another aspect, a sandwich structure includes at least one core and at least one adhesively bonded outer face sheet including elongated grooves or ribs formed therein. Yet another aspect of a sandwich structure has raised ridges bridging between adjacent peaks in a core sheet in one direction but not in a perpendicular direction, which synergistically interface, engage or contact with grooves or ribs formed in an outer face sheet.
Abstract:
A sandwich structure employs a core sheet including alternating peaks and valleys therein, and at least one outer face sheet including grooves or ribs therein. In another aspect, a sandwich structure includes at least one core and at least one adhesively bonded outer face sheet including elongated grooves or ribs formed therein. Yet another aspect of a sandwich structure has raised ridges bridging between adjacent peaks in a core sheet in one direction but not in a perpendicular direction, which synergistically interface, engage or contact with grooves or ribs formed in an outer face sheet.
Abstract:
A sandwich structure employs a core sheet including alternating peaks and valleys therein. In another aspect, a sandwich structure includes at least one metallic core and at least one adhesively bonded outer face sheet. Yet another aspect of a sandwich structure has raised ridges bridging between adjacent peaks in a core sheet in one direction but not in a perpendicular direction, thereby achieving different properties in the different sheet directions.
Abstract:
A container apparatus includes a sandwich structure. In another aspect, a cargo-securing or logistics track is attached to a sandwich structure of a container apparatus which employs at least one core sheet including alternating peaks and valleys therein in addition to at least one adhesively bonded outer face sheet. Yet another aspect of a container apparatus includes a depression in a sandwich structure adapted to receive a flush mounted track or post therein. Another aspect of a container apparatus includes a ship-lap and/or bent peripheral flange at a panel-to-panel interface seam.
Abstract:
A method for creating a bonded zinc-coated structure is provided. In another aspect, a sheet metal joining system includes a heated roller contacting a sheet metal workpiece to braze together zinc-based coatings. A further aspect employs a zinc coated metal sandwich including a core having peaks and valleys.
Abstract:
A sandwich structure is provided that includes a corrugated layer with at least one core layer (structure) made of a periodic array of adjacent truncated upward facing peaks and truncated downward facing valleys. Each truncated peak has a bonding land of an area A1. Each truncated valley has a bonding land of an area A2. A ratio of A1/A2 is less than 2. A distance D is between neighboring peaks, and a distance D is also between neighboring valleys. The corrugated layer is made from an initially flat sheet thickness of t. A first sheet layer is physically coupled to bonding lands of the truncated peaks. A second sheet layer is physically coupled to bonding lands of the truncated valleys.
Abstract:
A sandwich structure (31) employs a core sheet (35) including alternating peaks and valleys therein, and at least one outer face sheet (33) including grooves or ribs (71, 81, 91) therein. In another aspect, a sandwich structure includes at least one core and at least one adhesively bonded outer face sheet including elongated grooves or ribs formed therein. Yet another aspect of a sandwich structure has raised ridges (45) bridging between adjacent peaks (39) in a core sheet in one direction but not in a perpendicular direction, which synergistically interface, engage or contact with grooves or ribs formed in an outer face sheet.
Abstract:
A method for creating a bonded zinc-coated structure (50) is provided. In another aspect, a sheet metal joining system includes a heated roller (620) contacting a sheet metal workpiece (100, 300) to braze together zinc-based coatings. A further aspect employs a zinc coated metal sandwich including a core having peaks and valleys.
Abstract:
A method and apparatus for producing a metal core sandwich structure that is lightweight and many times stiffer than regular sheet metal, and which is easily formable into curved structures as well as structures having compound curves. In one embodiment, a formed metal core includes a plurality of cells comprising alternating front and rear projections extending outwardly in front of and behind a median plane, with each projection having a bonding surface area or land configured to be brazed or bonded with corresponding external metal sheets on both sides of the formed metal core. A plurality of micro- abrasions or indentations are formed on the bonding lands, allowing stronger brazing or bonding joints to be formed between the metal core and the external metal sheets by facilitating improved capillary action by the metal core during the brazing or bonding process.
Abstract:
A method and apparatus for producing a metal core sandwich structure that is lightweight and many times stiffer than regular sheet metal, and which is easily formable into curved structures as well as structures having compound curves. In one embodiment, a formed metal core includes a plurality of cells comprising alternating front and rear projections extending outwardly in front of and behind a median plane, with each projection having a bonding surface area or land configured to be brazed or bonded with corresponding external metal sheets on both sides of the formed metal core. A plurality of micro-abrasions or indentations are formed on the bonding lands, allowing stronger brazing or bonding joints to be formed between the metal core and the external metal sheets by facilitating improved capillary action by the metal core during the brazing or bonding process.