Abstract:
A combinatorial method for identifying a catalyst composition for use in the homogeneous addition polymerization of an olefin monomers, said catalyst composition comprising a transition metal compound, a cocatalyst and a polymerization modifier, as well as catalyst compositions and improved olefin polymerization processes resulting therefrom.
Abstract:
Disclosed is a polymeric charge transfer layer comprising a polymer, which comprises as polymerized units, Monomer A, Monomer B, and Monomer C crosslinking agent. Also disclosed is an organic electronic device especially an organic light emitting device containing the polymeric charge transfer layer.
Abstract:
A light emitting device comprising a polymeric charge transfer layer, wherein the polymeric charge transfer layer is formed from a composition comprising a polymer, said polymer comprising one or more polymerized units derived from Structure A, and one or more polymerized units derived from Structure (B), each as follows: A) a monomer having the Structure (A), as defined herein: and B) a monomer that comprises one or more dienophile moieties.
Abstract:
The present invention relates to a polymeric charge transfer layer comprising a polymer and a p-dopant. The polymer comprises as polymerized units, Monomer A, Monomer B, and Monomer C crosslinking agent. The present invention further relates to an organic electronic device, especially an organic light emitting device containing the polymeric charge transfer layer.
Abstract:
A composition for use in forming a multi-block copolymer from a single polymerizable monomer, said copolymer containing therein two or more segments or blocks differing in branching index, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization catalyst, (B) a second olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, at least one of catalyst (A) or catalyst (B) being capable of forming a branched polymer by means of chain walking or reincorporation of in situ formed olefinic polymer chains, and (C) a chain shuttling agent.
Abstract:
A polymer comprising units (1) derived from an alpha-olefin having at least 3 carbon atoms (1'), units (2) derived from divinylbenzene or C 1-10 hydrocarbyl substituted derivatives thereof (2'), and units (3) derived from ethylene (3'), the polymer comprising at least 75 mole % of units (1), from 0.01 to 5 mole % of units (2), and up to 20 mole % of units (3), the polymer having a branching factor BF 0.75. A process for preparing a polymer comprising units (1) derived from an alpha-olefin having at least 3 carbon atoms (1'), units (2) derived from divinylbenzene or C 1-10 hydrocarbyl substituted derivatives thereof (2'), and units (3) derived from ethylene (3'), by contacting the alpha-olefin (1'), the divinylbenzene compound (2'), and ethylene (3') in the presence of a polymerisation catalyst under polymerisation conditions wherein the mole ratio of alpha-olefin (1') to divinylbenzene or C 1-10 hydrocarbyl substituted derivatives thereof (2') is at least 10:1, the mole ratio of divinylbenzene or C 1-10 hydrocarbyl substitut ed derivatives thereof (2')to ethylene (3') is in the range of from 1:0.1 to 1:2000, and the mole ratio of (1') to (3') is at least 4:1.
Abstract:
Constrained geometry metal complexes that are useful in the preparation of catalysts for olefin polymerizations are prepared by contacting cyclopentadienyl compounds with metal compounds.
Abstract:
Disclosed is a composition comprising at least one compound selected from (Structure A), as described herein, and for films and electronic devices containing the same.
Abstract:
A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.