Abstract:
An optical assembly is provided wherein the optical assembly includes a first optical element configured to receive light and alter a transmission path of the light through the first optical element in a first direction and a second direction, and a second optical element in optical communication with the first optical element, the second optical element configured to receive the light from the first optical element, and alter a transmission path of the light through the second optical element in the first and second directions, wherein the light is passed through the second optical element, such that a sensor receives light from a field of view that is approximately 30 degrees to 60 degrees offset from a field of view of the sensor.
Abstract:
A control system for one or more electrochromic elements used in an outside electrochromic (OEC) mirror used in automobiles or other vehicular applications, to control the glare of both IEC elements used as a rearview mirror (20) as well as the OEC elements (24, 26) used as sideview mirrors (24, 26). An ambient light sensor (129) and glare sensor (133) operate to determine a glare level used to control both IEC and OEC electrochromic elements. The drive circuits for the OEC's elements may be controlled so as to account for various factors such as tinted glass characteristics in the vehicle.
Abstract:
An outside mirror lighting assembly (100) and method inlcludes a housing (108) and a first glass panel (101) where one or more light emitting devices (107) are positioned at an edge of the first glass panel (101). Light rays from the at least one light emitting device (107) propagate within the glass panel for illumining its outer periphery. Words, logos, or other indicia (125) may be also be illuminated by direct or indirect light emitted into an etched area of the glass. The mirror assembly supplies a soft illuminated glow around the outer periphery and/or the indicia for proving a unique and pleasing appearance to the user.
Abstract:
An optical assembly is provided wherein the optical assembly includes a first optical element and a second optical element. The first optical element is configured to receive light and alter a transmission path of the light through the first optical element in a first direction and a second direction. The second optical element is configured to receive the light from the first optical element, and alter a transmission path of the light through the second optical element in the first and second directions. The light is passed through the second optical element, such that a sensor receives light from a field of view that is approximately 30 degrees to 60 degrees offset from a field of view of the sensor.
Abstract:
A smoke alarm system for providing interconnect supervision between detectors includes smoke detectors configured so that an interconnect line extends between each of the of smoke detectors. In one embodiment using a wired connection, each of the smoke detectors includes an interconnect input and an interconnect output for connecting the smoke detectors into a loop configuration. Similarly, the system may also operate to provide interconnect supervision in a wireless manner such that each of the smoke detectors are polled on a periodic basis. Thus, the smoke alarm system uses interconnect supervision for alerting other detectors of a smoke and/or carbon monoxide alarm as well as altering other detectors to a fault condition.
Abstract:
An outside mirror lighting assembly (100) and method includes a housing (108) and a first glass panel (101) where one or more light emitting devices (107) are positioned at an edge of the first glass panel (101). Light rays from the at least one light emitting device (107) propagate within the glass panel for illumining its outer periphery. Words, logos, or other indicia (125) may be also be illuminated by direct or indirect light emitted into an etched area of the glass. The mirror assembly supplies a soft illuminated glow around the outer periphery and/or the indicia for proving a unique and pleasing appearance to the user.
Abstract:
An inventive rearview assembly for a vehicle may comprise a mirror element and a display including a light management subassembly. The subassembly may comprise an LCD placed behind a transflective layer of the mirror element. Despite a low transmittance through the transflective layer, the inventive display is capable of generating a viewable display image having an intensity of at least 250 cd/m2 and up to 3500 cd/m2. The display includes a novel backlighting subassembly and novel optical components including a magnifying system, a depolarizer, a reflector, and a reflective polarizer. The display may be configured to display an image having edges contoured to correspond to the edges of the mirror element.
Abstract translation:用于车辆的本发明的后视组件可以包括镜子元件和包括灯管理子组件的显示器。 子组件可以包括放置在镜元件的半透反射层之后的LCD。 尽管通过透反射层具有低透射率,但是本发明的显示器能够产生具有至少250cd / m 2和高达3500cd / m 2的强度的可视显示图像。 显示器包括新颖的背光子组件和包括放大系统,去偏振器,反射器和反射偏振器的新型光学部件。 显示器可以被配置为显示具有与镜子元件的边缘对应的轮廓的边缘的图像。
Abstract:
A rearview device mounting assembly including a mount configured to be operably coupled to a windshield. A first support extends downward from the mount. A second support is rotatably connected with the first support and is rotatable about a first axis of rotation. The second support includes a carrier that extends substantially orthogonal to the first axis of rotation. A rearview device assembly is operably connected to the carrier. The rearview device assembly is substantially vertically rotatable about the carrier and substantially horizontally rotatable about the first support.
Abstract:
The present invention relates to improved optical structures, related manufacturing processes and assemblies incorporating the improved optical structures. In at least one embodiment accurate light source color information is provided throughout substantially the entire associated field of view.
Abstract:
A rearview assembly of the present invention may include a housing adapted to be mounted to the vehicle, a rearview element disposed in the housing for providing an image to the driver of the rearward view from the vehicle, and a glare sensor positioned to receive light from passing through the rearview element. The glare sensor may be a surface-mounted to a circuit board. An optional secondary optical element may be disposed between the rearview element and the glare sensor. The optional secondary optical element may have an anamorphic lens for providing different fields of view horizontally versus vertically.