Abstract:
A method for designing a patient specific orthopaedic device intended for an osteoarticular structure of a patient, based on at least two two-dimensional radiographic images of the osteoarticular structure taken respectively in two offset image-taking directions, comprising the following steps: b) locating anatomical points on the radiographic images; c) determining at least one three-dimensional geometrical feature of the patient by matching the anatomical points located at step b); d) determining at least one three-dimensional size parameter of the orthopaedic device based on the geometrical feature of the patient determined at step c).
Abstract:
This invention relates to a radiological imaging method comprising: 2 radiation sources with imaging directions orthogonal to each other, performing vertical scanning of a standing patient (20) along a vertical scanning fdirection (Z), wherein said radiological method comprises at least one operating mode in which: a frontal scout view is made so as to identify a specific bone(s) localization (21) within said frontal scout view, both driving current intensity and voltage intensity modulations (11) of said frontal radiation source, depending on patient thickness and on said identified specific bone(s) localization (21) along said vertical scanning direction (Z), are performed simultaneously, preferably synchronously, and automatically, so as to improve a compromise between: lowering the global radiation dose received by a patient (20) during said vertical scanning, and increasing the local image contrasts of said identified specific bone(s) localization (21) at different imaging positions along said vertical scanning direction (Z), for the frontal image.
Abstract:
This invention relates to a method of radiography of an organ of a patient, comprising: a first vertical scanning of said organ by a first radiation source (1) and a first detector (3) cooperating to make a first two dimensional image of said organ, a second vertical scanning of said organ by a second radiation source (2) and a second detector (4) cooperating to make a second two dimensional image of said organ, said first vertical scanning and said second vertical scanning being performed synchronously, said first and second images viewing said organ of said patient according to different angles of incidence, wherein there is a vertical gap (h) between on the one hand said first source (1) and detector (3) and on the other hand said second source (2) and detector (4), such that said first vertical scanning and said second vertical scanning are performed synchronously but with a time shift in between, so as to reduce cross-scattering between said first and second images.
Abstract:
A radiological imaging method including 2 radiation sources with imaging directions orthogonal to each other, performing vertical scanning of a standing patient along a vertical scanning direction, wherein radiological method includes at least one operating mode in which: a frontal scout view is made so as to identify a specific bone(s) localization within the frontal scout view, driving current intensity modulation of the frontal radiation source, depending on patient thickness and on the identified specific bone(s) localization along the vertical scanning direction, is performed automatically, so as to improve a compromise between: lowering the global radiation dose received by a patient during the vertical scanning, while keeping at a sufficient level the local image contrasts of the identified specific bone(s) localization at different imaging positions along the vertical scanning direction, for the frontal image.
Abstract:
Disclosed is a method of radiography of an organ of a patient, including: first and second vertical scanning being performed synchronously, wherein a computed correction is processed on both first and second raw images, on at least part of patient scanned height, for at least overweight or obese patients, so as to reduce, between first and second corrected images, cross-scattering existing between the first and second raw images, and wherein the computed correction processing on both the first and second raw images includes: a step of making a patient specific modeling, using as patient specific data therefore at least both first and second raw images, a step of determining a patient specific representation of radiation scattering by the patient specific modeling, a step of processing the patient specific radiation scattering representation on both the first and second raw images so as to get the first and second corrected images.
Abstract:
Disclosed is a surgery control tool: being no patient implant, including: an elongated body having the shape and the size of a spinal correction rod, end contact parts being able to contact a patient implanted spinal correction rod implant, spacers extending from the elongated body towards the end contact parts.
Abstract:
This invention relates to a surgery planning tool, which is not a patient implant, comprising an elongated body including at least a portion having the shape and the size of a spinal correction rod.
Abstract:
A method for designing a patient specific orthopaedic device intended for an osteoarticular structure of a patient, based on at least two two-dimensional radiographic images of the osteoarticular structure taken respectively in two offset image-taking directions, comprising the following steps: b) locating anatomical points on the radiographic images; c) determining at least one three-dimensional geometrical feature of the patient by matching the anatomical points b) located at step b); d) determining at least one three-dimensional size parameter of the orthopaedic device based on the geometrical feature of the patient determined at step c).
Abstract:
A spinal correction rod implant manufacturing process part comprising: an estimation step (90) of a targeted spinal correction rod implant shape (3) which is based on a patient specific spine shape correction (2) and which includes a patient specific spine 3D modeling (91, 92), one or more simulation loops (60) each comprising: a first simulation step of an intermediate spinal correction rod implant shape (5) resulting from a modeling of a mechanical interaction (4) between said patient specific spine (1) and: either, for the first simulation loop, said targeted spinal correction rod implant shape (3), or, for subsequent simulation loop(s), if any, an overbent spinal correction rod implant shape (8) resulting from the previous simulation loop, a second simulation step of a spinal correction rod implant shape overbending (7) which is applied to said targeted spinal correction rod implant shape (3) to give a resulting overbent spinal correction rod implant shape (8) and which is representative of a difference between: either, for the first loop, said targeted spinal correction rod implant shape (3), or, for subsequent simulation loop(s), if any, said overbent spinal correction rod implant shape (8) resulting from the previous simulation loop, and said intermediate spinal correction rod implant shape (5).
Abstract:
An imaging apparatus comprises an emission device (5) to emit X-rays and a detection device (6) to detect X- rays. A detector collimator (19) is located between the patient space (4) and the detection device (6). The emission device (5) and detection device (6) operate while translating along said displacement axis, to take a plurality of acquisitions. The imaging apparatus comprises a setting device (29) to modify a dimension of a collimator slit.