Abstract:
Described herein are methods, apparatus and architecture for dynamic spectrum management (DSM) including protocol stacks, logical entities and functionalities that support DSM operation in opportunistic spectrum such as television white space (TVWS). The architecture supports aggregating bandwidth at the internet protocol (IP) layer over licensed and opportunistic bands as well as noncontiguous spectrum aggregation at the medium access control (MAC) layer. The control plane protocol stack includes a multi network transport protocol (MNTP), a channel management (CM) protocol, a policy protocol, a medium access control (MAC) entity, a physical entity and an air interface, all of which are configured to allocate, monitor, and update aggregated spectrum resources with respect to a DSM client.
Abstract:
A method for use in a Dynamic Spectrum Manager (DSM) for coordinating asynchronous silent periods in a network, the method comprising detecting a primary user in the network, transmitting a Silent Period Start Control Message to one or more cognitive radio (CR) nodes in the network, wherein the message indicates the start and duration of a silent period and initiates spectrum sensing,receiving a Measurement Report Control Message from the one or more CR nodes in the network indicating results of spectrum sensing, and transmitting a message to the one or more CR nodes, wherein the message instructs the one or more CR nodes to move to a different frequency based on the spectrum sensing results.
Abstract:
A method for use in a wireless transmit/receive unit (WTRU) is disclosed. The WTRU is able to communicate with a network through sidelink (SL). The WTRU is configured with a set of scheduling request (SR) configurations. The method comprises: receiving, through the SL, (1) CSI reporting request which requests a CSI report and (2) CSI reporting latency information for the CSI report; starting a timer based on the received CSI reporting latency information; triggering a SR transmission specific to CSI reporting; and determining if a SL grant has been received before the time expires, wherein on a condition that the SL grant has been received before the timer expires, the method further comprises 205 transmitting the CSI report based on the SL grant; on a condition that no SL grant has been received before the timer expires, the method further comprises 206 dropping the CSI report.
Abstract:
Systems, methods, and instrumentalities are disclosed for uplink (UL) transmissions in wireless systems. The systems, methods and instrumentalities may include a wireless transmit/receive unit (WTRU) with a receiver configured to receive one or more uplink (UL) grants that may include allocations associated with a regular UL (RUL) carrier and a supplementary UL (SUL) carrier. The RUL and SUL carriers may be associated with a common downlink (DL) carrier of a serving cell. The WTRU may include a processor configured to select data from one or more logical channels for transmission in accordance with the allocations. The WTRU may include a transmitter configured to transmit data from one logical channel on the RUL carrier and to transmit data from another logical channel on the SUL carrier in accordance with the allocations.
Abstract:
A method for use in a wireless transmit/receive unit (WTRU) is disclosed. The WTRU is able to communicate with a network through sidelink (SL). The WTRU is configured with a set of scheduling request (SR) configurations. The method comprises: receiving, through the SL, (1) CSI reporting request which requests a CSI report and (2) CSI reporting latency information for the CSI report; starting a timer based on the received CSI reporting latency information; triggering a SR transmission specific to CSI reporting; and determining if a SL grant has been received before the time expires, wherein on a condition that the SL grant has been received before the timer expires, the method further comprises 205 transmitting the CSI report based on the SL grant; on a condition that no SL grant has been received before the timer expires, the method further comprises 206 dropping the CSI report.
Abstract:
Systems, methods, and devices for unicast and/or multicast link establishment and maintenance. A wireless transmit receive unit (WTRU) may send a link establishment request broadcast message, wherein in the link may be for multicast, unicast, or groupcast. The WTRU may receive a link establishment response broadcast message and a connectivity report. The WTRU may then send a link establishment confirmation broadcast message once a multicast or unicast link has been established, at which point the WTRU may send and receive a multicast message. The link establishment request message may be sent based on one or more triggers: receiving a QoS flow, needing a new sidelink radio bearer, determining that a new QoS flow or radio bearer requires network controlled admission control, and/or receive a unicast and/or multicast establishment request. The WTRU may transmit a unicast and/or multicast usability signal (UMUS). The WTRU may preempt the established multicast or unicast link.
Abstract:
A wireless transmit receive unit (WTRU) may operate in a dual connectivity (DC) context. While in a RRC_INACTIVE state, the WTRU may receive a paging message from a first cell, which may be associated with a master cell group (MCG). The paging message may indicate that the WTRU is to respond to the paging message on another cell. Also, or alternatively, the paging message may indicate that data for the WTRU is available on an SCG bearer. The WTRU may select a second cell (e.g., a cell other than the first cell) from a secondary cell group (SCG) list, which may include one or more secondary cells. The WTRU may initiate a random access channel procedure with the second cell based on receiving the paging message from the first cell. The WTRU may receive data from the second cell via the SCG bearer while in the RRC_INACTIVE state.
Abstract:
Systems, methods, and devices for unicast and/or multicast link establishment and maintenance. A wireless transmit receive unit (WTRU) may send a link establishment request broadcast message, wherein in the link may be for multicast, unicast, or groupcast. The WTRU may receive a link establishment response broadcast message and a connectivity report. The WTRU may then send a link establishment confirmation broadcast message once a multicast or unicast link has been established, at which point the WTRU may send and receive a multicast message. The link establishment request message may be sent based on one or more triggers: receiving a QoS flow, needing a new sidelink radio bearer, determining that a new QoS flow or radio bearer requires network controlled admission control, and/or receive a unicast and/or multicast establishment request. The WTRU may transmit a unicast and/or multicast usability signal (UMUS). The WTRU may preempt the established multicast or unicast link.
Abstract:
A wireless transmit receive unit (WTRU) may operate in a dual connectivity (DC) context. While in a RRC_INACTIVE state, the WTRU may receive a paging message from a first cell, which may be associated with a master cell group (MCG). The paging message may indicate that the WTRU is to respond to the paging message on another cell. Also, or alternatively, the paging message may indicate that data for the WTRU is available on an SCG bearer. The WTRU may select a second cell (e.g., a cell other than the first cell) from a secondary cell group (SCG) list, which may include one or more secondary cells. The WTRU may initiate a random access channel procedure with the second cell based on receiving the paging message from the first cell. The WTRU may receive data from the second cell via the SCG bearer while in the RRC_INACTIVE state.