Abstract:
A wireless communication node, such as a repeater, including a frequency translating repeater, a physical layer (PHY) repeater, time divisional duplex repeater (TDD) and the like, is configured with a pair of directional patch antennae and an omnidirectional antenna. The patch antennae can be selected depending on the orientation of the repeater package to communicate with a station such as an access point or a base station. The omni-directional antenna can be directed toward another station such as a client. The patch antennae and the omni-directional antenna can be orthogonally polarized to increase isolation and reduce electromagnetic coupling. Multiple antennae can be used in multiple-input-multiple-output (MIMO) configurations.
Abstract:
A wireless repeater extends a coverage area of a wireless network base station within a structure or facility. The repeater includes a master unit for wirelessly communicating with the wireless network base station and a slave unit for wirelessly communicating with one or more subscriber terminals. The master unit is connected to the slave unit through new or existing wiring in the structure to enable the master unit to transmit wireless signals to the slave unit on a downlink transport frequency and to receive wireless signals from the slave unit on an uplink transport frequency in a manner that is transparent to the wireless base station and the subscriber terminals.
Abstract:
A wireless network includes at least one Multiple Input Multiple Output (MIMO) wireless network station and two or more physical layer repeaters. Each of the physical layer repeaters is for receiving a wireless signal to or from the at least one MIMO wireless network station and re-transmitting the wireless signal while continuing to receive the wireless signal. The repeaters may be either frequency translating repeaters or non-frequency translating repeaters.
Abstract:
A frequency translating repeater (120) for use in a time division duplex (TDD) radio protocol communications system includes local oscillator (LO) circuits (210, 310, and 410) to facilitate repeating by providing isolation, reduced phase noise, reduced pulling, and the like. Tunable LOs (441, 442) can be directly coupled to down-converters (413, 414) and up-converters (426, 427) for increased isolation, reduced phase noise, less stringent frequency accuracy, and a reduced potential for pulling.
Abstract:
A non-frequency translating repeater (110, 210, 300) for use in a time division duplex (TDD) radio protocol communications system includes detection retransmission and automatic gain control. Detection is performed by detectors (309, 310) and a processor (313). Detection can be overridden by processor (313) using logic elements (314). Antennae (220, 230) having various form factors can be used to couple a base station (222) to a subscriber terminal (232) which can be located in a sub-optimal location such as deep inside a building or the like.
Abstract:
A method and apparatus are provided for operating a frequency translating repeater in a wireless local are network (WLAN) having one or more repeaters (200, 204), a network protocol for communicating between one or more base units (100) and one or more client units (104, 105). A first frequency channel may be used for receiving and transmitting, the network protocol defining multiple operating frequencies monitored to detect a transmitted signal. The signal is characterized to determine if associated with the base units. A second frequency channel selected for use by one of the repeaters for retransmission of additional signals based on the characterization.
Abstract:
In a wireless communications network such as a WLAN, a frequency translating repeater (200, 204) facilitates and enhances wireless communication between a first communication device (100) and one or more second client unit (104, 105) using frequency translation and retransmission based on modified protocol messages (410). A DS parameter message (310) may include a frequency channel intended for use between one or more of repeaters (200, 204) and client units (104, 105) but does not include the frequency channel between one or more of repeaters (200, 204) and the first communication device (100).
Abstract:
A repeater (200) facilitates wireless communication between a first communication device (100) and a second communication device (105) in a wireless network using a time division duplex protocol for data transmission. The repeater (200) includes a receiver (310, 315) for receiving a signal on either of at least two bi-directional communication frequencies simultaneously. A signal detector (362) is operatively coupled to the receiver (300, 310, 315) for determining if the signal is present on at least one of the two bi-directional frequencies. A frequency converter (320, 321, 323, 324, 360, 361) is for converting the signal present on one of the bi-directional frequencies to a converted signal on the other of the bi-directional frequencies. A transmitter (300, 325, 330, 335, 345, 350) is for transmitting the converted signal on the other of said bi-directional frequencies.
Abstract:
A wireless repeater employing echo cancellation uses a non-linear element in digital baseband to compress the digital transmit signal waveform, thereby allowing distortions in the transmitter circuit as well as interference to be cancelled. In one embodiment, the repeater applies non-linear baseband compression to the digital transmit signal in the digital domain to reduce the peak-to-average amplitude of the digital transmit signal prior to digital-to-analog conversion and prior to over-the-air transmission and prior to sampling of the digital transmit signal for use as the reference signal for echo cancellation. The intentionally introduced non-linear distortion in the transmit signal improves echo cancellation and stability of the repeater. In one embodiment, the non-linear compression is applied only when the digital transmit signal is at or exceed a given power level or a given gain level.
Abstract:
An echo cancellation wireless repeater with first and second antenna arrays having vertical and horizontal feed antenna elements selects a combination of antenna elements for reception and transmission to reduce interference and improve the quality of signal reception. In one embodiment, the antenna elements are switchably connected to transceiver circuits and a combination of antenna elements is selected based on the best desired performance result. In another embodiment, the antenna elements are each connected to its own transceiver circuit and the echo cancellation repeater performs beamforming in baseband to select a combination of antenna elements.