Abstract:
During a heating phase, injection of a jet of fuel and oxidant (fuel annularly enshrouding oxidant or oxidant annularly enshrouding fuel) from a fuel-oxidant nozzle is combusted in a combustion space. During a transition from the heating phase to a distributed combustion phase, an amount of a secondary portion of either the fuel or oxidant is injected as a jet into the combustion space while the primary portion of that same reactant from the fuel-oxidant nozzle is decreased. At some point during the transition phase, a jet of actuating fluid is injected at an angle towards the jet of reactants from the fuel-oxidant nozzle and/or towards the jet of the secondary portion of reactant. The jet of primary portions of reactants and/or secondary portion of reactant is caused to be bent/deviated towards the other of the two jets. The staging of the secondary portion of reactant is increased until a desired degree of staging and commencement of a distributed combustion phase are achieved.
Abstract:
A burner has a fuel/oxidant nozzles and a pair of dynamical lances spaced on either side thereof that inject a jet of fuel and primary oxidant along a fuel injection axis, and jets of secondary oxidant, respectively. Jets of actuating fluid impinge against the jets of secondary oxidant to fluidically angle the jets of secondary oxidant away from the fuel injection axis. The action of the angling away together with staging of the oxidant between primary and secondary oxidant injections allows achievement of distributed combustion conditions.
Abstract:
During a heating phase, injection of a jet of fuel and oxidant (fuel annularly enshrouding oxidant or oxidant annularly enshrouding fuel) from a fuel-oxidant nozzle is combusted in a combustion space. During a transition from the heating phase to a distributed combustion phase, an amount of a secondary portion of either the fuel or oxidant is injected as a jet into the combustion space while the primary portion of that same reactant from the fuel-oxidant nozzle is decreased. At some point during the transition phase, a jet of actuating fluid is injected at an angle towards the jet of reactants from the fuel-oxidant nozzle and/or towards the jet of the secondary portion of reactant. The jet of primary portions of reactants and/or secondary portion of reactant is caused to be bent/deviated towards the other of the two jets. The staging of the secondary portion of reactant is increased until a desired degree of staging and commencement of a distributed combustion phase are achieved.
Abstract:
Described herein is a fluid cell for an optical microscopy tool having a solid state membrane having a first side and a second, opposing side; a first fluid chamber comprising a first fluid having a first refractive index located on the first side of the membrane; and, a second fluid chamber comprising a second fluid having a second refractive index located on the second side of the membrane, the second refractive index being different than the first refractive index. Also described herein is a method for imaging a single biomolecule, the method including generating a field of evanescent illumination at a solid state membrane between a first fluid and a second fluid having different refractive indexes; and detecting light emitted by optical detectors linked to the single biomolecules at the solid state membrane.