Abstract:
An actuator assembly for an adjustable fluid-filled lens is provided. In some embodiments, the actuator assembly includes a clamp configured to adjust the optical power of the fluid lens module when the clamp is compressed. In some embodiments, a magnetic element is configured to adjust the optical power of the fluid-filled lens. In some embodiments, a plunger changes the optical power of the fluid lens module. In some embodiments, a reservoir is configured such that deformation of the reservoir changes the optical power of the fluid-filled lens. In some embodiments, a balloon is configured to deform the reservoir. In some embodiments, an adjustable fluid-filled lens includes a septum configured to be pierceable by a needle and automatically and fluidly seal a fluid chamber after withdrawal of the needle. In some embodiments, a thermal element can heat fluid within a fluid chamber to change an optical power of the lens module.
Abstract:
In an embodiment, a hinge for a fluid-filled lens assembly includes a base having a first end configured to connect to a temple arm of the lens assembly and a second end configured to connect to a frame of the lens assembly, wherein the base includes a gap that is shaped to allow for tubing to pass from the first end to the second end of the base. In an embodiment, the first end of the base includes a cammed surface configured to engage a surface of the temple arm. In an embodiment, the first and second ends of the base are configured to flex around a rotation axis of the hinge.
Abstract:
A non-round fluid lens assembly includes a non-round rigid lens and a flexible membrane attached to the non-round rigid lens, such that a cavity is formed between the non-round rigid lens and the flexible membrane. A reservoir in fluid communication with the cavity allows a fluid to be transferred into and out of the cavity so as to change the optical power of the fluid lens assembly. In an embodiment, a front surface of the non-round rigid lens is aspheric. Additionally or alternatively, a thickness of the flexible membrane may be contoured so that it changes shape in a spheric manner when fluid is transferred between the cavity and the reservoir.
Abstract:
The invention relates to a rain sensor, especially for a motor vehicle, said sensor comprising an optical waveguide (22) which can be arranged in a windscreen. According to the invention, the planar holographic coupling elements for coupling and decoupling radiation (4) are formed from layered photo-polymer parts (3) into which volume holograms are integrated. The photo-polymer parts (3) are arranged between the core (1) of the waveguide and the envelope of the waveguide (2), resulting in a simple production method and an increased flexibility in terms of the arrangement of the waveguide (22) in the windscreen.
Abstract:
An embodiment of a piezoelectric actuator system for a fluid-filled lens is described herein. A piezoelectric reservoir is provided encompassing a fluid. In an embodiment, the reservoir is disposed around the perimeter of a lens module within a housing. In an embodiment, electrodes are woven into the reservoir and connected to a power source. An applied potential causes the reservoir to flex with a magnitude and direction related to the amplitude and polarity respectively of the potential. In an embodiment, flexing of the reservoir causes fluid to either inflate or deflate the fluid-filled lens module.
Abstract:
Various embodiments of a non-powered actuator arm for controlling liquid flow to a fluid-filled lens are described herein. A vertical tweezer assembly compresses a reservoir of solution in a first vertical direction by lateral disposition of a slider mounted on the outside of the housing. The assembly may also be shaped to provide compression of the reservoir in a second horizontal direction by lateral disposition of a slider. In another embodiment, a housing may contain a piston that moves laterally within the housing and collapses the reservoir disposed adjacent to the piston and also within the housing. The housing may contain a plurality of compressible domes which can each be compressed to cause a local compression on the reservoir disposed within the housing. Compression of the reservoir causes liquid inflation of a lens module.
Abstract:
An optical and mechanical design of a sealed, non-round fluid-filled lens capable of providing variation of optical power. The fluid lens includes at least three optical components: at least one mostly rigid optical disc, at least one mostly flexible optical membrane and a layer of a transparent fluid that is in communication via a fluid channel with a reservoir of excess fluid contained in a reservoir that can be accessed to augment the fluid volume inside the fluid lens to change the power of the fluid lens. The fluid lens is capable of providing correction of spherical and astigmatic errors, and utilizes contoured membranes to minimize image aberrations.
Abstract:
Bei einem Regensensor, insbesondere für ein Kraftfahrzeug, mit einem Lichtwellenleiter (22), der in einer Scheibe anordenbar ist, wird vorgeschlagen, dass die planaren holographischen Koppelelemente zur Ein- und Auskopplung von Strahlung (4) durch schichtförmige Stücke (3) aus Photopolymer gebildet sind, in die Volumenhologramme eingearbeitet sind. Die Photopolymerstücke (3) sind zwischen dem Wellenleiterkern (1) und dem Wellenleitermantel (2) anzuordnen, wodurch eine leichte Herstellbarkeit und eine erhöhte Flexibilität in der Anordnung des Wellenleiters (22) in der Scheibe resultiert.
Abstract:
Bei einem optischen Sensor zur Detektion von Feuchtigkeit auf einer Scheibe eines Kraftfahrzeugs, bei dem die Lichtstrahlung (11) zu einem in der Lichtstrecke zwischen Sender (1) und Empfänger (2) angeordneten Detektionsbereich (12) auf der Scheibe lenkbar ist, wird vorgeschlagen, dass der Sender (1), und/oder der Empfänger (2) transparent ausgebildet und in die Scheibe integriert sind. Dadurch können die transparenten optischen Elemente (1, 2, 3, 8, 9) im Bereich eines wischerge- reinigten Wischfeldes der Scheibe angeordnet sein.
Abstract:
Ein hochauflösender Faserlaser-Sensor zur Messung einer Messgrösse M weist eine Pumplichtquelle (2), einen Faserlaser (1) und eine Detektions-Auswerte-Einheit (3) auf. Der Faserlaser (1) weist auf: einen doppelbrechenden ersten Endreflektor (11), einen zweiten Endreflektor (12), eine laserverstärkende Faser (13), eine Sensorfaser (14) und ein Mittel zur Modenkopplung (15). Die laserverstärkende Faser (13), die Sensorfaser (14) und das Mittel zur Modenkopplung (15) sind zwischen den Endreflektoren (11,12) angeordnet. In dem Faserlaser (1) ist Licht in zwei, aufgrund ihrer Polarisation und/oder ihrer transversalen Raumstruktur zueinander orthogonalen Lichtzustände (x,y; LP' 01 ,LP' 11 ) ausbreitungsfähig. Durch das Mittel zur Modenkopplung (15) sind die orthogonalen Lichtzustände (x,y; LP' 01 ,LP' 11 ) miteinander koppelbar. In dem Faserlaser (1) sind in jedem der zwei Lichtzustände (x,y; LP' 01 ,LP' 11 ) mehrere Longitudinalmoden (LM x p , LM x p+1 ..., LM y q , LM y q+1 ...; LM 01 p , LM 01 p+1 ..., LM 11 q , LM 11 q+1 ...) schwingungsfähig. Durch Zusammenwirken der Messgrösse (M) mit der Sensorfaser (14) ist in der Sensorfaser (14) eine Änderung der Doppelbrechung für die zwei orthogonalen Lichtzustände (x,y; LP' 01 ,LP' 11 ) erzielbar. Aus der Änderung der Doppelbrechung resultiert eine Änderung von Schwebungsfrequenzen in der Laseremission. Dadurch, dass der erste Endreflektor (11) gegenüber dem zweiten Endreflektor (12) verstimmt ist, können einzelne Polarisationsmode-Schwebungs-Signale statt eines aus mehreren entarteten PMB-Signalen bestehenden und darum verbreiterten Schwebungs-Signals detektiert werden. Es wird eine hohe Sensor-Auflösung erzielt.