Abstract:
This invention relates to a half-bridge driver comprising first and second power switches, connected with their respective current paths in series, a pulse generator for generating a voltage pulse waveform, arranged to drive said first power switch (33), a first current generator (11), for generating a current pulse for each negative flank of said voltage pulse waveform, a second current generator (12), for generating a current pulse for each positive flank of said voltage pulse waveform, and a differential current receiver circuit (27), connected to said first and second current generators, and arranged to generate an output signal (I LATCH ) equal to the difference of the currents flowing through said current generators (11, 12), said output signal arranged to drive said second power switch (31).
Abstract:
A self-oscillating amplifier system comprising at least two integrator stages connected to receive an input signal and provide a reference signal, a comparator configured to provide a modulation signal based on the reference 5 signal and a modulation feedback signal, and a switching stage connected to form a switching output signal. The system further comprises a voltage limiting circuit connected between the input signal and the reference signal, for limiting a voltage across the at least two integrator stages. By connecting one single voltage limiting circuit across all integrator stages, the modulation signal will be limited to the voltage limit of this voltage limiting circuit.
Abstract:
A switching power conversion system and a method for start-up pop minimization in an audio amplifier assembly are disclosed. The switching power conversion system comprises a forward path including a compensator, a switching power stage and a demodulation filter. The system further comprises a DC-servo and a pre-charging circuit and a sequence control unit configured for providing a start-up sequence where the compensator and DC-servo are correctly biased and a bootstrap capacitor within the switching power stage is charged before the switching power stage is started. Hereby, it is e.g. possible to minimize the audible start-up pop in audio amplifier assemblies.
Abstract:
A power supply arrangement for a single ended class D amplifier, including a first primary winding connected in series with a first switch between the positive supply rail and ground, a second primary winding in phase with said first primary winding and connected in series with a second switch between the negative supply rail and ground, and a controller adapted to apply a control signal to said first and second switches, said control signal (Q) having ON-pulses of a predefined pulse time separated by a dead time. In use, the primary winding connected to the supply rail with the highest numerical voltage will transform the rail voltage difference to the supply rail with the lowest numerical voltage through the opposite primary winding thus reducing any voltage unbalance between the windings.
Abstract:
A new and improved self-oscillating amplifier system is presented, suitable for use in high fidelity audio applications. The self-oscillating amplifier system comprises a feedback path and a forward path including a pulse modulator, a switching power amplification stage and a demodulation filter. The forward path further includes a pair of parallel forward filters preceding the pulse modulators, a differentiating forward filter and an integrating forward filter. The differentiating forward filter is utilized for controlling a switching frequency of the system while the integrating forward filter is utilized for controlling the behavior of the amplifier system within an operating frequency band (e.g. audio band). The self-oscillating amplifier system exhibits improved performance in terms of open loop gain, reduced phase turn and improved robustness as compared to other previously known self-oscillating amplifier systems.
Abstract:
A new and improved self-oscillating amplifier system is presented, suitable for use in high fidelity audio applications. The self-oscillating amplifier system comprises a feedback path and a forward path including a pulse modulator, a switching power amplification stage and a demodulation filter. The forward path further includes a pair of parallel forward filters preceding the pulse modulators, a differentiating forward filter and an integrating forward filter. The differentiating forward filter is utilized for controlling a switching frequency of the system while the integrating forward filter is utilized for controlling the behavior of the amplifier system within an operating frequency band (e.g. audio band). The self-oscillating amplifier system exhibits improved performance in terms of open loop gain, reduced phase turn and improved robustness as compared to other previously known self-oscillating amplifier systems.
Abstract:
A switching power conversion system and a method for start-up pop minimization in an audio amplifier assembly are disclosed. The switching power conversion system comprises a forward path including a compensator, a switching power stage and a demodulation filter. The system further comprises a DC-servo and a pre-charging circuit and a sequence control unit configured for providing a start-up sequence where the compensator and DC-servo are correctly biased and a bootstrap capacitor within the switching power stage is charged before the switching power stage is started. Hereby, it is e.g. possible to minimize the audible start-up pop in audio amplifier assemblies.
Abstract:
A power conversion system comprising an amplifier input for receiving an analogue input signal and an amplifier output for providing a switching output signal is disclosed. The system is applicable for use in high definition switching audio amplification. The power conversion system further comprises a clipper for clipping the analogue input signal having a predefined range limited by a clipping level, a pulse modulator and a switching power stage. The system further has a feedback path to the clipper including a duty cycle measuring unit and a clip level filter which generates a clip level signal and where the clipping level of the clipper is controlled by the clip level signal. Hereby it is e.g. possible to clip an analogue input signal with good precision and reliability in a switching power conversion system.
Abstract:
A self-oscillating amplifier system is disclosed. The system comprises a pulse modulator, a switching power amplification stage and a demodulation filter. Moreover, the system comprises a compensator including a forward filter which is a high order filter including a second order pole pair and a second order zero pair. Hereby it is possible to decrease the phase turn at low frequencies for better stability and increasing the gain of the control loop within the desired bandwidth.
Abstract:
A switching power conversion system and a method for start-up pop minimization in an audio amplifier assembly are disclosed. The switching power conversion system comprises a forward path including a compensator, a switching power stage and a demodulation filter. The system further comprises a DC-servo and a pre-charging circuit and a sequence control unit configured for providing a start-up sequence where the compensator and DC-servo are correctly biased and a bootstrap capacitor within the switching power stage is charged before the switching power stage is started. Hereby, it is e.g. possible to minimize the audible start-up pop in audio amplifier assemblies.