Abstract:
The disclosed invention is with regard to a liquid crystal display panel including a substrate having a plurality of layers formed thereon, and having a first surface region and a second surface region on a surface of an uppermost layer of the plurality of layers, wherein the first and second surface regions having different surface characteristics in reaction to a particular liquid, and a spacer formed on the second surface region.
Abstract:
A liquid crystal display (LCD) device includes a substrate including a pixel region and a driving circuit region, first and second semiconductor layers within the pixel region and the driving circuit region, a gate insulating layer on the substrate, first and second gate electrodes on the gate insulating layer, and a storage capacitor electrode on the gate insulating layer within the pixel region, first conductive source and drain regions within the first semiconductor layer, second conductive source and drain regions within the second semiconductor layer, a first insulating interlayer on the substrate, a pixel electrode on the first insulating interlayer overlapping the storage capacitor electrode, a second insulating interlayer on the substrate including the pixel electrode, a plurality of contact holes exposing the pixel electrode and the first and second source and drain regions, and first and second source and drain electrodes connected with the first and second source and drain regions through the contact holes.
Abstract:
A backlight assembly includes a plurality of optical sheets, a frame for housing the plurality of optical sheets and a light unit, the frame having a guide portion positioned along a first side of the frame positioned from an end portion of the frame by a first distance, the guide portion having a guide hole positioned to correspond to a hole through a portion of the frame, an open upper portion positioned along a lateral direction opposing the guide hole, and an overlapping portion overlapping the guide hole to form a boundary of the open upper portion, a first wire connected to a first end of the lamp unit and inserted through the guide hole of the guide portion and the hole through the portion of the frame to be overlapped by the overlapping portion, and a second wire connected to a second end of the lamp unit and inserted through the open upper portion and the guide hole.
Abstract:
A driving circuit for a liquid crystal display device includes a reference voltage source, a first switch connected to the reference voltage source, a second switch connected to the first switch, a PUMP signal generator connected to the first and second switches, the PUMP signal generator oppositely adjusting the first and second switches, a capacitive element connected to the first and second switches, a third switch connected to the second switch, and a reset voltage source connected to the third switch.
Abstract:
A method of manufacturing a phase-difference film includes printing and hardening an alignment film on a substrate, coating a liquid crystal material on the hardened alignment film, and irradiating polarized ultraviolet light on the coated liquid crystal material to control an alignment direction of the liquid crystal material.
Abstract:
The present invention discloses a method of fabricating a touch panel for a liquid crystal display device including forming a parent touch panel having a plurality of unit touch panels and a parent polarizer, laminating the parent touch panel and the parent polarizer, and cutting the laminated parent touch panel and parent polarizer into a plurality of single touch panel units and forming a plurality of polarizer integrated touch panels.
Abstract:
A method for forming a pattern using a printing process is disclosed in the present invention. The method includes providing a substrate having an etching layer formed thereon, locating a master having at least one opening in the etching layer, filling a resist in the at least one opening of the master, and separating the master from the substrate to leave the resist on the substrate.
Abstract:
A liquid crystal display device is disclosed in the present invention. The liquid crystal display device includes a color filter substrate having a black matrix, and color filter layers at a designated region determined by the black matrix, an array substrate having a gate bus line and a data bus line crossing perpendicularly and defining a unit pixel region, a thin film transistor arranged at an intersection of the gate bus line and the data bus line, a pixel electrode contacting a drain electrode of the thin film transistor and vertically overlapping portions of the gate bus line, the data bus line, an adjacent gate bus line, and an adjacent data bus line, and an organic insulating layer on the pixel electrode and the thin film transistor, wherein a surface of the array substrate is rubbed in a 315 degree direction, and a liquid crystal layer between the array substrate and the color filter substrate.
Abstract:
A reflective liquid crystal display device and a fabricating method thereof are disclosed in the present invention. The reflective liquid crystal display device includes a substrate having first and second pixel regions, a gate line on the substrate, a data line crossing the gate line and defining the pixel regions, a thin film transistor connected to the gate line and the data line, wherein the thin film transistor comprises a gate electrode, an active layer, and source and drain electrodes, first and second reflective electrodes over the thin film transistor, wherein the first and second reflective electrodes are separated from each other by a first gap, the first and second reflective electrodes are located at the first and second pixel regions, respectively, and completely cover the data line at the pixel regions, and a patterned spacer filling the first gap between the first and second electrodes.
Abstract:
An array substrate for an in-plane switching liquid crystal display device includes a plurality of gate lines and data lines on a substrate, a plurality of thin film transistors, each thin film transistor disposed at a crossing of the gate and data lines and includes a gate electrode, an active layer, a source electrode, and a drain electrode, a plurality of common lines formed parallel with the gate lines on the substrate, a plurality of common electrodes linearly extending from each of the common lines into pixel regions; a plurality of pixel electrodes within each of the pixel regions, each of the pixel electrodes disposed between and parallel with the common electrodes, a first plurality of organic patterns formed along the common electrodes on opposing right and left sides of each of the common electrodes; and a second plurality of organic patterns formed along the pixel electrodes on opposing right and left sides of each of the pixel electrodes.