Abstract:
Disclosed herein is a completion device for a wellbore, that includes at least an elastomer circumferentially disposed around a tubular, the elastomer having a main sealing segment and at least one activation segment axially extending from the main sealing segment at opposing ends, wherein each activation segment has an exposed end; and an impermeable membrane circumferentially encasing the elastomer and configured to prevent an influx of wellbore fluids into the elastomer except at the exposed ends.
Abstract:
The instant patent application discloses, among other things, a sand management system comprising an upper sand management portion and a lower sand management portion and an extendable leak-off tube. When the leak-off tube is in a fully retracted position, the leak-off tube is securely releasably engaged with upper sand management portion and when the leak-off tube is in a fully extended position, it is securely releasably engaged with the lower sand management portion. Also disclosed herein is a method for dehydrating a slurry in an area between an upper sand management portion and a lower sand management portion. The method includes installing a leak-off tube between the upper sand management portion and the lower sand management portion and securely releasably connecting the leak-off tube to the lower sand management portion.
Abstract:
A frequency- scanned optical time domain reflectometry technique includes launching a plurality of interrogating pulses into an optical fiber at a plurality of optical carrier frequencies. A Rayleigh backscatter signal is detected for each interrogating pulse as a function of time between the launching of the pulse and the detection of the backscatter signal. The time resolved Rayleigh backscatter signal at each optical frequency may then be examined to determine a distribution of a physical parameter along the length of the optical fiber.
Abstract:
A hybrid junction assembly is provided. The hybrid junction assembly may comprise a junction body configured to sealingly couple to a first control line and a second control line. In addition, the assembly may include a transfer conduit configured to fit within a hybrid control line such that an annulus is formed between the transfer conduit and the hybrid control line. The first control line and the transfer conduit may form a first communication pathway and the second control line and the annulus may form a second communication pathway. The transfer conduit and the hybrid control line may be sealingly coupled to the junction body.
Abstract:
A system for use in a well includes downhole equipment for positioning in the well, and an optical fiber for deployment in the well, the optical fiber to extend to a location of interest in the well in proximity of the downhole equipment. An analysis unit analyzes detected light signals returned from the optical fiber that has been affected by acoustic events generated by the downhole equipment and to determine a status in the wellbore based on the analyzing.
Abstract:
According to one or more aspects of the present disclosure, a piezoelectric pump may include a hydraulic fluid path between a low pressure source and a high pressure tool port; a fluid disposed in the hydraulic fluid path; a piston in communication with the fluid; and a piezoelectric material connected to the piston to pump the fluid through the high pressure tool port.
Abstract:
According to one or more aspects of the present disclosure, a motor protector comprises a housing defining a compensator chamber; a compensator disposed in the housing having a motor fluid end in fluid communication with a motor fluid and a well fluid end, the compensator axially moveable relative to the housing in response to the expansion and contraction of the motor fluid; and a port formed through the housing to provide fluid communication from exterior of the housing to the well fluid end of the compensator. The compensator may be one selected from the group of a bellows and a plunger.
Abstract:
Disclosed are barite compositions. The barite compositions may be utilized for manufacturing perforator devices, including casing and liner components.
Abstract:
Well treatment compositions comprise water, a lipophilic anionic surfactant, a hydrophilic non- ionic surfactant, a second non-ionic surfactant, a water-solubilizing solvent, a water-immiscible solvent and a lipophilic non-ionic surfactant. Optionally, a second solvent may be incorporated. When added to spacer fluids, chemical washes or both, the compositions promote the removal of non-aqueous drilling fluids from casing surfaces. Additionally, the treated casing surfaces are water wet, thereby promoting optimal bonding to cement.
Abstract:
Various implementations directed to analyzing a reservoir using fluid analysis are provided. In one implementation, a method may include determining mud gas logging (MGL) data based on drilling mud associated with a wellbore traversing a reservoir of interest. The method may also include determining first downhole fluid analysis (DFA) data based on a first reservoir fluid sample obtained at a first measurement station in the wellbore. The method may further include determining predicted DFA data for the wellbore based on the first DFA data. The method may additionally include determining second DFA data based on a second reservoir fluid sample obtained at a second measurement station in the wellbore. The method may further include analyzing the reservoir based on a comparison of the MGL data and a comparison of the second DFA data to the predicted DFA data.