Abstract:
A boron coated straw detector for use in a neutron detection system is disclosed comprising a boron coated straw having at least one boron-coated septum radially oriented and extending a pre-determined distance towards the center of the straw. Preferably, the straw comprises a plurality of septa comprising a rigid surface, coated on both sides with a boron composition. Preferably, the septa run the length of the straw detector from one end of the straw to the other. The area coated on the septa adds to the area coated on the arc segments offering a significant benefit in sensitivity of the neutron detector.
Abstract:
An apparatus and a continuous, in-line process is disclosed for applying a boron coating to a thin foil. The process comprises applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating the mandrel as it moves forward.
Abstract:
A method and apparatus is disclosed for improved magnetron sputtering utilizing a movable magnet. Preferably, the apparatus can be used to move the magnet along any two dimensional paths within the range of the moving stages. In one preferred method for sputtering a coating using a magnetron sputtering apparatus comprises the step of moving a magnet assembly in two dimensions during the sputtering process to allow increased erosion area of the target as compared to stationary magnets. In another preferred embodiment the invention includes a magnetron sputtering apparatus comprising a first motion stage allowing movement in a first direction, a second motion stage allowing movement in second direction, a magnet assembly operably attached to said first and second motion stages, and a control unit, wherein said first motion stage moves in a general first direction and second motion stage moves in a generally second direction which is generally orthogonal and wherein said control unit controls the movement of the motion stages.
Abstract:
A method is disclosed of measuring the thickness of a thin coaling on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method, includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method Includes determining the thickness of Boron Carbide films deposited on copper foil.. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as eerie ammonium, nitrate (CAN), Measured boron concentration, values can then be calculated.
Abstract:
A method and apparatus are disclosed with a continuous straw forming process for spiral winding boron-coated foil into a rounded tube or cylinder with an overlap and tight contact between the spiral edges, and a welding process utilizing a high precision fiber laser to weld the spiral seem forming a straw tube.
Abstract:
A method and apparatus are disclosed with a continuous straw forming process for spiral winding boron-coated foil into a rounded tube or cylinder with an overlap and tight contact between the spiral edges, and a welding process utilizing a high precision fiber laser to weld the spiral seem forming a straw tube.
Abstract:
An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.
Abstract:
A boron coated straw detector for use in a neutron detection system is disclosed comprising a boron coated straw having at least one boron-coated septum radially oriented and extending a pre-determined distance towards the center of the straw. Preferably, the straw comprises a plurality of septa comprising a rigid surface, coated on both sides with a boron composition. Preferably, the septa run the length of the straw detector from one end of the straw to the other. The area coated on the septa adds to the area coated on the arc segments offering a significant benefit in sensitivity of the neutron detector.
Abstract:
A boron coated straw detector for use in a neutron detection system is disclosed comprising a boron coated straw having at least one boron-coated septum radially oriented and extending a pre-determined distance towards the center of the straw. Preferably, the straw comprises a plurality of septa comprising a rigid surface, coated on both sides with a boron composition. Preferably, the septa run the length of the straw detector from one end of the straw to the other. The area coated on the septa adds to the area coated on the arc segments offering a significant benefit in sensitivity of the neutron detector.
Abstract:
An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.