Abstract:
Aspects are generally directed to network security systems and methods of monitoring network activity. In one example, a network security system includes and interface to receive a Hypertext Transfer Protocol (HTTP) network log that includes a matrix of data, a feature extraction component configured to extract a connectivity matrix from the HTTP network log based on a recurring pattern within the matrix of data, and a training module configured to provide deep learning architecture training data based on the connectivity matrix. The system may include a deep learning architecture configured to receive and propagate the training data through one or more layers thereof to train the one or more layers, and being configured to generate a general data representation of the HTTP network log. The system may include a behavior analytics component to detect a discordant network activity within the HTTP network log based on the general data representation.
Abstract:
A method implemented by an optical circuit, including beam splitter, phase shifters and cross-phase modulators, for solving Ising-model using quantum annealing discretizes a continuous time-dependent Hamiltonian function over a time period T, into a plurality of smaller portions; implements each of said smaller portions with a non-linear optical medium, and iterates over said smaller portions to output a solution of the Ising Hamiltonian problem, using the optical components.
Abstract:
Technology for performing services based on power consumption is disclosed. A plurality of power consumption levels can be identified at a service area. The plurality of power consumption levels can be characterized into current power consumption behavior. The current power consumption behavior can be compared to at least one power consumption behavioral model, the power consumption behavioral model including historical power consumption behaviors for the service area. A service can be performed when the current power consumption behavior diverges from the power consumption behavioral model outside of a predefined threshold.
Abstract:
According to one aspect, embodiments of the invention provide a node comprising a processor, a memory including a predefined mapping, the predefined mapping correlating network characteristics to related critical thresholds at which a delivery ratio of the node is close to a maximum level and at which a total number of transmissions by the node is close to a minimum number necessary to achieve the delivery ratio, and a component configured to communicate with one-hop neighbors of the node and configured to determine at least one characteristic of a dynamic network based on information received from the one-hop neighbors of the node, wherein, in reference to the predefined mapping, the processor is configured to identify a critical threshold associated with the at least one characteristic of the network and is configured to transmit a first packet to at least one one-hop neighbor based on the critical threshold.
Abstract:
According to one aspect, embodiments of the invention provide a node comprising a processor, a memory including a predefined mapping, the predefined mapping correlating network characteristics to related critical thresholds at which a delivery ratio of the node is close to a maximum level and at which a total number of transmissions by the node is close to a minimum number necessary to achieve the delivery ratio, and a component configured to communicate with one-hop neighbors of the node and configured to determine at least one characteristic of a dynamic network based on information received from the one-hop neighbors of the node, wherein, in reference to the predefined mapping, the processor is configured to identify a critical threshold associated with the at least one characteristic of the network and is configured to transmit a first packet to at least one one-hop neighbor based on the critical threshold.
Abstract:
An encoder can convert a stream of data into three or four synchronized 4-PSK signals, for 64-QAM and 256-QAM, respectively. Three or four mixers can combine the three or four synchronized PSK signals with a common local oscillator signal to form three or four respective amplifiable signals, which can all have the same amplitude. One amplifier receives a first of the amplifiable signals and powers one radiator. Two amplifiers both receive a second of amplifiable signals and power two respective radiators. Four amplifiers receive a third of the amplifiable signals and power four respective radiators. The amplifiers can all operate in near or full saturation. Each radiator radiates in one of a plurality of discrete, specified states. The radiated states from the radiators combine through far-field electromagnetic propagation and effectively sum at the receiver to mimic transmission from a single amplifier.
Abstract:
A method for secure comparison of encrypted symbols. According to one embodiment, a user may encrypt two symbols, share the encrypted symbols with an untrusted third party that can compute algorithms on these symbols without access the original data or encryption keys such that the result of running the algorithm on the encrypted data can be decrypted to a result which is equivalent to the result of running the algorithm on the original unencrypted data. In one embodiment the untrusted third party may perform a sequence of operations on the encrypted symbols to produce an encrypted result which, when decrypted by a trusted party, indicates whether the two symbols are the same.
Abstract:
A method for secure comparison of encrypted symbols. According to one embodiment, a user may encrypt two symbols, share the encrypted symbols with an untrusted third party that can compute algorithms on these symbols without access the original data or encryption keys such that the result of running the algorithm on the encrypted data can be decrypted to a result which is equivalent to the result of running the algorithm on the original unencrypted data. In one embodiment the untrusted third party may perform a sequence of operations on the encrypted symbols to produce an encrypted result which, when decrypted by a trusted party, indicates whether the two symbols are the same.
Abstract:
A method and apparatus for providing battery optimization and protection in a low power energy environment is presented. A current configuration of a battery module including a plurality of a particular type of battery is determined. A voltage level of the battery module is detected. A determination is made whether the current configuration of the battery module is a preferred configuration for the particular type of batteries of the battery module. When the determination is that the current configuration of the battery module is not the preferred configuration for the particular type of batteries of the battery module, then the battery module is reconfigured to a preferred configuration for the particular type of batteries of the battery module.