Abstract:
A method and system for providing asymmetric modes of operation in multi-carrier wireless communication systems. A method may assign a long code mask (LCM) to an information channel associated with a plurality of forward link carriers to transmit data from an access network to an access terminal; and multiplex the information channel on a reverse link carrier. The information channel may include one of data source channel (DSC), data rate control (DRC) and acknowledgment (ACK) information, and the multiplexing may be code division multiplexing (CDM). The A may instruct the AT on whether to multiplex the DSC information based on feedback from the AT. The method may further offset the ACK information on the reverse link to reduce the reverse link peak to average, CDM the information channel on an I-branch and on a Q-branch, and transmit the code division multiplexed information channel on the reverse link carrier.
Abstract:
This disclosure provides a method and apparatus for the communication of low delay data over multiple channels having different speed and latency and requiring a different amount of time to set up. In one embodiment, the transmitter removes duplicate data packets from a queue after a second channel, such as a dedicated channel is established. In an alternate embodiment, sequence numbers are assigned to data packets, allowing the receiver to identify duplicate packets and ignore the duplicates.
Abstract:
Assignment of a session information IP address for use as a mobile station identifier facilitates a distributed architecture for processing IP communications in coordination with a wireless communication system. The session information IP address identifies a storage location of session information for a given AT. The AT effectively carries a pointer to the session information, wherein an access point is able to access the session information directly. This avoids the need to store mapping information for each AT and associated location of session information. Additionally, use of an IP address identifying the session holder as a mobile station identifier avoid delays incurred by such mapping. The session information IP address may be compressed to use a locally unique value. The compressed version conserves bit space, and reduces processing complexity on relocation to a next access point.
Abstract:
Assignment of a session information IP address for use as a mobile station identifier facilitates a distributed architecture for processing IP communications in coordination with a wireless communication system. The session information IP address identifies a storage location of session information for a given AT. The AT effectively carries a pointer to the session information, wherein an access point is able to access the session information directly. This avoids the need to store mapping information for each AT and associated location of session information. Additionally, use of an IP address identifying the session holder as a mobile station identifier avoid delays incurred by such mapping. The session information IP address may be compressed to use a locally unique value. The compressed version conserves bit space, and reduces processing complexity on relocation to a next access point.
Abstract:
Method and apparatus for variable length Physical Layer (PL) packet generation. Multiple Security Layer (SL) packets may be multiplexed into a single PL packet to increase efficiency, wherein the SL packets may have variable lengths. In one embodiment, different format SL packets for different users are combined into capsules that form the PL packet. Shorter packets are for users in poor channel conditions or requiring smaller amounts of data due to the applications and the accompanying Quality of Service (QoS) requirements. In one embodiment, a modified Preamble structure provides for Unicast or multi-user packets. Alternate embodiment provides modified Rate Sets, a mechanism for identifying ACK from a single-user packet or a multiplexed packet (delayed ACK). ON/OFF keying for ACK channel v/s bi-polar keying used in IS-856, and/or multi-valued interpretation of DRC.
Abstract:
A three-dimensional pose of the head of a subject is determined based on depth data captured in multiple images. The multiple images of the head are captured, e.g., by an RGBD camera. A rotation matrix and translation vector of the pose of the head relative to a reference pose is determined using the depth data. For example, arbitrary feature points on the head may be extracted in each of the multiple images and provided along with corresponding depth data to an Extended Kalman filter with states including a rotation matrix and a translation vector associated with the reference pose for the head and a current orientation and a current position. The three-dimensional pose of the head with respect to the reference pose is then determined based on the rotation matrix and the translation vector.
Abstract:
A method and apparatus for enhancing device performance through transport flow control is provided. The method may include determining that a level of user interest is indicated in at least one application of one or more applications, and modifying a transport flow associated with at least one of the one or more applications.
Abstract:
A method and apparatus for reducing HTTP header is provided. The method may include receiving a suppression identifier list, wherein the suppression identifier list associates header identifier values with at least a portion of one or more header content items in an HTTP header, replacing the one or more header content items with the corresponding header field identifier from the suppression identifier list, and transmitting the data packet with the one or more header field identifiers replacing the corresponding one or more header content items.
Abstract:
A method and apparatus for obtaining content with reduces round trip times is provided. The method may comprise transmitting, from a device (110), a primary- content item request to a proxy server (130) to obtain a primary content item (142) using a first protocol, receiving the primary content item (142) from the remote proxy (130) using the first protocol, generating one or more secondary content item requests for one or more secondary content items (144) associated with the primary content item (142), transmitting the one or more secondary content item requests to the proxy server (130) using a second protocol, wherein the second protocol decouples the one or more secondary content item requests from an acknowledgement of receipt of the one or more secondary content item requests, and receiving at least one of the one or more secondary content items (144) from the proxy server (130) using the second protocol.
Abstract:
Techniques for dynamically varying coverage in a multi-carrier communication system are described. A sector may operate on multiple carriers. The sector may vary coverage on a given carrier k based on its load, so that less interference may be caused to other sectors when the sector load is light. In one design, the sector may communicate on a first carrier at a first transmit power level and on a second carrier at a second transmit power level equal to or lower than the first transmit power level. The sector may vary the second transmit power level based on its load to vary the coverage of the second carrier. The sector may reduce the second transmit power level to zero or a low level if the sector load is light. The sector may also vary the second transmit power level based on a function of sector load or a switching pattern.