Abstract:
A system is disclosed for compensating well logs for adverse effects of the borehole and near borehole formation effects. The system is configured primarily for processing logging-while-drilling (LWD) density measurements, and includes means for generating a one-dimensional density log which is corrected for adverse effects of logging tool standoff and “dipping” beds penetrated by the borehole. The system is, however, applicable to any type of LWD or other type of logging system which requires borehole corrections, and which responds to variations in formation properties in a plane perpendicular to the borehole. The system can also be modified to include LWD apparatus using sensors that require no borehole corrections, and only require corrections for dipping beds. The system is ideally suited for logging equipment using two sensors, but can be modified for use with single sensor systems or systems using more than two sensors.
Abstract:
A nuclear spectroscopy method and apparatus for the analysis of a signal comprising pulses representative of random nuclear events, and for the determination of the dead time, including counting and recording, versus time, the accumulated counts of the pile-up events (PU), i.e. events identified as being characteristic of two or more overlapping events, and the counts of non pile-up events (NPU), for each of successive time intervals of a measurement cycle. Particularly the method includes: forming a preliminary reference plot of the PU count rates versus the NPU count rates; forming an actual plot corresponding to the signal under analysis, of PU count rates versus NPU count rates; and deducing the dead time from comparison between actual and reference plots. In an alternative embodiment, the method allows one to maintain constant the dead time, during the signal analysis, by: establishing a preliminary relationship between dead time and different plots of PU count rates versus NPU count rates; establishing a preliminary relationship between the plots and a functioning parameter; establishing a reference plot corresponding to an imposed dead time; establishing an actual plot; comparing the actual and reference plots; and modifying the functioning parameter so as to bring the respective actual and reference plots in compliance.
Abstract:
Systems, methods, and devices for thermally protecting a scintillator crystal of a scintillation detector are provided. In one example, a thermally-protected scintillator may include a scintillator crystal and a thermal protection element, which may partially surround the scintillator crystal. The thermal protection element may be configured to prevent the scintillator crystal from experiencing a rate of change in temperature sufficient to cause cracking or non-uniform light output, or a combination thereof.
Abstract:
A method for operating a pulsed neutron generator includes adjusting a target current of the neutron generator to a preselected value. A parameter related to a neutron output of the neutron generator is measured. A target voltage of the neutron generator is adjusted to maintain the measured parameter within a predetermined range.
Abstract:
A method for determining at least one formation property calculated from neutron measurements acquired with a downhole tool includes emitting neutrons from a source in the tool into the formation, detecting neutrons with at least one detector in the downhole tool, calculating a first slowing-down length (L1) based on the detected neutrons, and deriving a second slowing-down length (L2) based on the first slowing-down length (L1). Further steps include deriving a correlation function for relating slowing-down lengths from a first tool to slowing-down lengths associated with a different source, wherein the correlation function depends on formation properties such as bulk density; and applying the correlation function to the slowing-down length of the first tool to derive the slowing-down length of the second tool. A method for determining a thermal neutron formation porosity based on a slowing-down length from epithermal neutron measurements from an electronic neutron source includes converting the slowing-down length into a computed neutron slowing-down length from thermal neutron measurements from a chemical neutron source, wherein the converting uses a correlation function that depends on formation bulk density; deriving a thermal neutron countrate ratio based on the computed neutron slowing-down length, wherein the deriving uses a function that depends on the formation bulk density and formation sigma; and computing the thermal neutron formation porosity from the thermal neutron countrate ratio.
Abstract:
A method is disclosed for measuring neutron interaction properties of an earth formation. The method includes irradiating the formation with bursts of high energy neutrons. The bursts have a duration selected to enable detection of short duration burst related phenomena. After at least one of the bursts, short duration burst related phenomena are measured. After a selected number of the bursts, long duration neutron burst-related phenomena are detected. In some embodiments, the short duration burst related phenomena include at least one of inelastic gamma ray related phenomena, neutron slowing down related phenomena and short capture cross section related phenomena.
Abstract:
A apparatus and an apparatus for determining the respective contributions in spectroscopy measurements of the borehole and the earth formations surrounding the borehole, derived from the detection of gamma rays resulting from the collisions of neutrons with atoms of the formation or the borehole. From gamma rays from a near and far detector, and established, at each depth, responses (e.g. elemental yields) representative of the values of an unknown in the borehole and in the formation. The far detector response is plotted against the near detector response. From the plot and from known conditions of the detection, is derived a closed curve characteristic of the relative contributions of the borehole and the formation in the responses. For each depth, the respective values of the unknown are derived from the position on the plot of the couple of responses for that depth, with respect to the closed curve. For instance, on a plot of C/(C+O) yields, the curve is a parallelogram two concurrent sides of which form a coordinate system; the coordinates of each response corresponds to the values of the unknown respectively for the formation and the borehole.
Abstract:
Disclosed herein is a system for fast gain regulation in a gamma-ray spectroscopy instrument. The system includes a detector configured to generate a signal indicative of energy arriving at the detector, and a processor configured to determine one or more system performance indicators. The system also includes a controller configured to compute a first gain correction term based on one of more system performance indicators and change the device gain based on the computed first gain correction tem.
Abstract:
A method for tool path identification in formation evaluation includes obtaining measurements of formation properties in azimuthal sectors for each of a plurality of depth levels; calculating quality factors from the measurements; identifying a centroid or maximum of the quality factors among the measurements in each of the azimuthal sectors for each depth level; and associating the centroid or maximum of the quality factors at each depth level along a borehole to form the tool path. Calculating the quality factors may include parameterizing the measurements according to at least one factor selected from a spine factor, a rib factor, and a volumetric photoelectric factor. A method for determining corrected measurements for formation properties includes identifying a tool path from measurements taken in azimuthal sectors at each depth level along a borehole; and calculating a corrected measurement at the each depth level by averaging measurements in the azimuthal sectors adjacent the tool path.
Abstract:
A method is disclosed for determining a characteristic of a mud mixture surrounding a drilling tool within a borehole in which a drilling tool is received. The method includes turning the tool in the borehole. Energy is applied into the borehole from an energy source disposed in the tool. Measurement signals are received at a sensor disposed in the tool from a location around the borehole. The cross-section of the borehole is separated into at least a first sector and a second sector. A first measurement signal from the first sector is substantially in response to returning energy which results from the interaction of the applied energy with the mud mixture. A second measurement signal from the second sector is substantially in response to returning energy which results from the interaction of the applied energy with the formation. An indication of an intrinsic characteristic of the mud mixture is derived from the first measurement signals associated with the first sector of the borehole.