Abstract:
The invention relates to a method for navigation of an aerial vehicle. The method comprises providing a sensor image from an aerial vehicle sensor. The method also comprises to repeatedly, until at least one predetermined criterion is reached,perform the step of setting input data, where the input data comprises information related to pitch angle, roll angle, yaw angle and three-dimensional position of the aerial vehicle, the step of providing a two-dimensional image from a database based on the input data, where the database comprises three-dimensional geo-referenced information of the environment, and the step of comparing the sensor image and the two dimensional image from the database. The method further comprises using the input data for which the two images correspond best to each other for determining at least one of the following quantities pitch angle, roll angle, yaw angle and three-dimensional position of the aerial vehicle. The invention also relates to a system, a computer program and a computer program product.
Abstract:
The present disclosure relates to a method (1) and system for determining the position of a target. The method comprises a step of measuring (110) with a range and direction measuring device the position of at least one reference object relative to the position of the range and direction measuring device. The method further comprises a step of marking (120) the at least one reference object in a geo-referenced three-dimensional map so as to obtain a geo-referenced position of the at least one reference object. The method further comprises a step of measuring (130) with the range and direction measuring device the position of the target relative to the position of the range and direction measuring device. The method further comprises a step of calculating (150) a position of the target based on the measured position of the at least one reference object relative to the position of the range and direction measuring device, based on the measured position of the target relative to the position of the range and direction measuring device, and based on the obtained geo-referenced position of the at least one reference object.
Abstract:
The disclosure relates to a system for determining the position of a target. The system comprises a device for determining the position of an observer. The system further comprises a range and direction measuring device. The system even further comprises a coordinate determining module. The coordinate determining module is arranged to receive the position of the observer. The coordinate determining module is further arranged to receive information from the range and direction measuring device. The coordinate determining module is even further arranged to determine initial coordinates of the target based on the position of the observer and the received information from the range and direction measuring device. The system further comprises a wearable presentation device. The wearable presentation device is arranged to receive the determined initial coordinates of the target. The wearable presentation device is further arranged to present a geo-referenced three-dimensional map to the observer. The wearable presentation device is even further arranged to receive input from the observer so as to mark a new position of the target on the geo-referenced three-dimensional map. The wearable presentation device is also arranged to determine final coordinates of the target based on the marked new position of the target. The disclosure also relates to a method, a computer program and a computer program product for determining the position of a target. The disclosure also relates to a system, a method, a computer program and a computer program product for targeting.
Abstract:
The present disclosure relates to a method (100) for rendering a simulated Synthetic Aperture Radar, SAR, image. The method comprises providing (110) a digital surface model or the like comprising 3D coordinate data in a geo-referenced coordinate system, determining (120) a sub-section of the digital surface model, and obtaining (130) the simulated SAR image based on the subsection of the digital surface model, wherein substantially each point in the simulated SAR image being associated to a 3D coordinate in the geo-referenced coordinate system.
Abstract:
The present disclosure relates to a method (200) for estimating information related to a vehicle pitch and/or roll angle. The method comprises a step of obtaining (220) a first estimate of the information related to the pitch and/or roll angle. The method is characterized by the steps of capturing (210) an image of an area covering at least a part of the horizon using a camera mounted on the airborne vehicle, and determining (240) an improved estimate of the information related to the pitch and/or roll angle based on the first estimate of the information related to the pitch and/or roll angle, and a digital elevation model.
Abstract:
The invention relates to a method (100) for navigation of an aerial vehicle. The method comprises providing (110) a sensor image from an aerial vehicle sensor. The method also comprises to repeatedly, until at least one predetermined criterion is reached (150), perform the step of setting input data (120), where the input data comprises information related to pitch angle, roll angle, yaw angle and three-dimensional position of the aerial vehicle, the step of providing (130) a two-dimensional image from a database based on the input data, where the database comprises three-dimensional geo-referenced information of the environment, and the step of comparing (140) the sensor image and the two dimensional image from the database. The method further comprises using the input data for which the two images correspond best to each other for determining (160) at least one of the following quantities pitch angle, roll angle, yaw angle and three-dimensional position of the aerial vehicle. The invention also relates to a system, a computer program and a computer program product.
Abstract:
The invention relates to a method for analysing images generated from at least one imaging system on at least one satellite. The method comprises providing at least three images of an area of interest from the at least one imaging system, where the at least three provided images are provided from at least three different angles,establishing point correspondence between the at least three provided images,generating at least two sets of three-dimensional information based on the at least three provided images, wherein the at least two sets of three-dimensional information are generated based on at least two different combinations of at least two of the at least three provided images of the area of interest,and comparing the at least two sets of three-dimensional information so as to determine discrepancies and providing information related to the imaging system and/or errors in the images based on the determined discrepancies. The invention also relates to a method for image correction, a system, a computer program and a computer program product.
Abstract:
The present invention relates to a method (700) and system for geo-referencing at least one sensor image. The method comprises the steps of -generating (701 )said at least one sensor image of a first scene with at least one sensor, -accessing (702) a 3D model of the environment comprising geo-coded 3D coordinate data and related to at least one second scene, said second scene encompassing said first scene, -matching (703) the sensor image with the 3D model find a section of the 3D model where there is a match between the first and the second scenes, -geo-referencing (704 )the sensor image based on the geo-coded 3D coordinate data of the found section of the 3D model, and -determining (705) a measure related to an uncertainty in the matching between the sensor image and the 3D model.
Abstract:
The disclosure relates to a system for determining the position of a target. The system comprises a device for determining the position of an observer. The system further comprises a range and direction measuring device. The system even further comprises a coordinate determining module. The coordinate determining module is arranged to receive the position of the observer. The coordinate determining module is further arranged to receive information from the range and direction measuring device. The coordinate determining module is even further arranged to determine initial coordinates of the target based on the position of the observer and the received information from the range and direction measuring device. The system further comprises a wearable presentation device. The wearable presentation device is arranged to receive the determined initial coordinates of the target. The wearable presentation device is further arranged to present a geo-referenced three-dimensional map to the observer. The wearable presentation device is even further arranged to receive input from the observer so as to mark a new position of the target on the geo-referenced three-dimensional map. The wearable presentation device is also arranged to determine final coordinates of the target based on the marked new position of the target. The disclosure also relates to a method, a computer program and a computer program product for determining the position of a target. The disclosure also relates to a system, a method, a computer program and a computer program product for targeting.
Abstract:
The disclosure relates to a system for determining the position of a target. The system comprises a device for determining the position of an observer. The system further comprises a range and direction measuring device. The system even further comprises a coordinate determining module. The coordinate determining module is arranged to receive the position of the observer. The coordinate determining module is further arranged to receive information from the range and direction measuring device. The coordinate determining module is even further arranged to determine initial coordinates of the target based on the position of the observer and the received information from the range and direction measuring device. The system further comprises a wearable presentation device. The wearable presentation device is arranged to receive the determined initial coordinates of the target. The wearable presentation device is further arranged to present a geo-referenced three-dimensional map to the observer. The wearable presentation device is even further arranged to receive input from the observer so as to mark a new position of the target on the geo-referenced three-dimensional map. The wearable presentation device is also arranged to determine final coordinates of the target based on the marked new position of the target. The disclosure also relates to a method, a computer program and a computer program product for determining the position of a target. The disclosure also relates to a system, a method, a computer program and a computer program product for targeting.