Abstract:
The present invention relates to methods and pharmaceutical compositions involving the use of bioerodible (biodegradable) polymers to address fundamental needs in ocular surgery including sealants and sealing methods, barriers to cellular adhesion and proliferation, and mechanical barriers. In a particular embodiment, the present invention is also directed to the treatment of intraocular hypotony in an eye by limiting the flow of aqueous from the eye. In a preferred embodiment, application of a polymer, such as to the angle of the eye, limits the flow, thereby increasing the intraocular pressure.
Abstract:
The present invention relates to improving, at least in part, a deficiency in dark adaptation for an individual. The therapy for dark adaptation includes local administration of a retinoid, such as a Vitamin A or a derivative thereof, such that deleterious side effects seen with systemic administration are avoided.
Abstract:
The present invention addresses the treatment of age-related macular degeneration using regulation of pathogenic mechanisms similar to atherosclerosis. In further specific embodiments, compositions that increase reverse cholesterol transport are utilized as therapeutic targets for age-related macular degeneration. In a specific embodiment, the lipid content of the retinal pigment epithelium, and/or Bruch's membrane is reduced by delivering Apolipoprotein A1, particularly a mimetic peptide.
Abstract:
The present invention provides engineered proteins and biomedical products made from the engineered proteins. The biomedical products include lenses useful for ophthalmic purposes.
Abstract:
The present invention addresses the treatment of age-related macular degeneration using regulation of pathogenic mechanisms similar to atherosclerosis. In further specific embodiments, reverse cholesterol transport components, such as transporters and HDL fractions, are utilized as diagnostic and therapeutic targets for age-related macular degeneration. In a specific embodiment, the lipid content of the retinal pigment epithelium, and/or Bruch's membrane is reduced.
Abstract:
The present invention addresses the treatment of age-related macular degeneration using regulation of pathogenic mechanisms similar to atherosclerosis. In further specific embodiments, reverse cholesterol transport components, such as transporters and HDL fractions, are utilized as diagnostic and therapeutic targets for age-related macular degeneration. In a specific embodiment, the lipid) content of the retinal pigment epithelium, and/or Bruch's membrane is reduced.
Abstract:
The present invention relates to altering the physical and/or chemical properties of at least part of at least one tissue in the eye. In a specific embodiment, it relates to the treatment of any eye disorder, although in particular embodiments the individual has a thickened Bruch's membrane. An activating energy source is utilized to effect a controlled diffusion enhancement and/or degradation of Bruch's membrane that enables improved diffusional transport between the choroid and retina. The individual is administered an inactivated diffusion-enhancing molecule that becomes associated with the membrane, which is then precisely exposed to an activating energy source, such as light or ultrasound.
Abstract:
The present invention addresses the treatment of age-related macular degeneration using regulation of pathogenic mechanisms similar to atherosclerosis. In further specific embodiments, reverse cholesterol transport components, such as transporters and HDL fractions, are utilized as diagnostic and therapeutic targets for age-related macular degeneration. In a specific embodiment, the lipid) content of the retinal pigment epithelium, and/or Bruch's membrane is reduced.
Abstract:
The present invention (Figure 1) relates to a method for creating shaped implants, such as intraocular lenses in vivo, as well as the novel implants themselves. Utilizing the method of the invention, it is possible to create an implant in vivo and to adjust either the physical properties such as refractive index, viscosity, etc., mechanical properties such as modulus, tensile strength, tear, etc., or the shape of the implant by noninvasive means. For example, using the method of the patent it is possible to create an intraocular lens in vivo and then adjust the shape and power of the lens through no invasion means. The novel implants are also addressed in this application.
Abstract:
A method for evaluating the effectiveness of adjustable optical implants is provided. The implants are first inserted into a test subject. The implant is then exposed to an external stimulus, such as light, to induce a change in the properties of the implant. The implants are then evaluated to determine the nature and extent of the change in properties.