Abstract:
A vibration attenuator for an aircraft has at least one weight mounted in a rotating system of a rotor hub of the aircraft, each weight being rotatable about an axis of rotation of the hub relative to the hub and to each other weight. Drive means are provided for rotating each weight about the axis of rotation at a selected speed for creating oscillatory shear forces that oppose and attenuate rotor-induced vibrations having a selected frequency.
Abstract:
A centrifugal force bearing having a means for providing a steady pitching moment is disclosed. The centrifugal force bearing may optionally comprise a coning means. A rotor system having the centrifugal force bearing is disclosed. A rotary-wing aircraft having the centrifugal force bearing is disclosed.
Abstract:
A transmission for a rotary-wing aircraft has a differential torque-splitting mechanism associated with an input shaft. The differential has a drive disk coaxial with the shaft and integral in rotation with the shaft, a first driven member coaxial with the shaft and generally adjacent the drive disk, and a second driven member coaxial with the shaft and generally adjacent the drive disk. At least one pin engages each of the drive disk, the first driven member, and the second driven member. The first driven member is configured to drive a first transfer gear, and the second driven member is configured to drive a second transfer gear for supplying torque to a bull gear associated with a rotor mast.
Abstract:
A centrifugal force bearing having a means for providing a steady pitching moment is disclosed. The centrifugal force bearing may optionally comprise a coning means. A rotor system having the centrifugal force bearing is disclosed. A rotary-wing aircraft having the centrifugal force bearing is disclosed.
Abstract:
A constant-velocity drive system for a rotary-wing aircraft rotor comprising a differential torque-splitting mechanism and a gimbal mechanism is disclosed. A rotary-wing aircraft having a rotary-wing aircraft rotor comprising a differential torque- splitting mechanism and a gimbal mechanism is disclosed.
Abstract:
A constant-velocity drive system for a rotary-wing aircraft rotor comprising a differential torque-splitting mechanism and a gimbal mechanism is disclosed. A rotary-wing aircraft having a rotary-wing aircraft rotor comprising a differential torque- splitting mechanism and a gimbal mechanism is disclosed.
Abstract:
A rotor-hub for a rotary-wing aircraft is disclosed. The rotor-hub comprises a yoke comprising a plurality of yoke arms and a plurality of yoke straps, wherein the yoke arms are joined together by the yoke straps, and wherein a plurality of inner walls of the yoke define a central void space. A pitch horn is movably connected to the yoke and a portion of the pitch horn is located within the central void space. A connecting shell is fixedly attached to the yoke.
Abstract:
A damper has a piston having an axis, an outer surface, and opposing ends. Elastomeric seals are in sealing contact with the outer surface of the piston, the seals being coaxial with the piston and limiting movement of the piston to a path along the axis of the piston. The seals also define fluid chambers adjacent the ends of the piston. A primary passage communicates the fluid chambers, and a selectively switchable valve for controls a flow of fluid from one of the chambers to another of the chambers through the primary passage. When the flow of fluid through the primary passage is permitted, movement of the piston is resisted by a first spring rate due to a shear force required to cause shear deflection of the seals. When the flow of fluid through the primary passage is restricted, movement of the piston is resisted by a second spring rate due to a fluid force required to cause bulging deflection of the seals.
Abstract:
A dual series damper includes a fluid damper portion and a elastomeric damper portion. The fluid damper portion includes a first housing, a first connection member, and a piston coupled to the first connection member. The piston divides an interior of the first housing into a first fluid chamber and a second fluid chamber. The piston has a fluid passage in the piston, the fluid passage being configured to provide fluid communication between the first fluid chamber and the second fluid chamber. The elastomeric damper portion includes a second housing, a second connection member coupled to the second housing, and an elastomer between the first housing and the second housing. When a lead/lag force is introduced to the dual series damper, the fluid damper portion behaves rigidly so that the elastomeric damper portion dampens the lead/lag oscillation.
Abstract:
A pylon mounting system with vibration isolation is provided. The system generally includes a housing that defines a first fluid chamber and a second fluid chamber, a fluid disposed within the fluid chambers; a piston assembly at least partially disposed within the housing, and a tuning passage defined by the piston assembly for providing fluid communication between the fluid chambers. The piston assembly has a first arm and a second arm, and each arm has a tubeform bearing for providing pitch and roll stiffness.