Abstract:
A well-logging tool may include a sonde housing, and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a bi-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
Disclosed is a radiation logging tool, comprising a tool housing; a compact generator that produces radiation; a power supply coupled to the compact generator; and control circuitry. Embodiments of the compact generator comprise a generator vacuum tube comprising a source generating charged particles, and a target onto which the charged particles are directed; and a high voltage supply comprising a high voltage multiplier ladder located laterally adjacent to the generator vacuum tube. The high voltage supply applies a high voltage between the source and the target to accelerate the charged particles to a predetermined energy level. The compact generator also includes an electrical coupling between an output of the high voltage supply and the target of the generator vacuum tube to accommodate the collocated positions of the generator vacuum tube and the high voltage power supply.
Abstract:
Disclosed is a radiation logging tool, comprising a tool housing; a compact generator that produces radiation; a power supply coupled to the compact generator; and control circuitry. Embodiments of the compact generator comprise a generator vacuum tube comprising a source generating charged particles, and a target onto which the charged particles are directed; and a high voltage supply comprising a high voltage multiplier ladder located laterally adjacent to the generator vacuum tube. The high voltage supply applies a high voltage between the source and the target to accelerate the charged particles to a predetermined energy level. The compact generator also includes an electrical coupling between an output of the high voltage supply and the target of the generator vacuum tube to accommodate the collocated positions of the generator vacuum tube and the high voltage power supply.
Abstract:
Methods for pre-treating packaging materials of particular composition for use in conjunction with a scintillation crystal are disclosed. The packaging materials may comprise a reflecting material, an elastomer, a reflecting fluorocarbon polymer, a polymer or elastomer loaded with a reflecting inorganic powder (including a reflecting inorganic powder comprising a high reflectance material selected from the group comprising Al2O3, TiO2, BN, MgO, BaSO4 and mixtures thereof), or a highly reflective metal foil selected from the group comprising Ag and Al that is chemically compatible with the scintillator crystal. The scintillator crystal may comprise a crystal selected from the group comprising NaI(Tl), LaBr3:Ce, LaCl3:Ce, La-halides, and La-mixed halides. The method includes subjecting a scintillator packaging material to a pre-treatment while in package form, said treatment selected from the group consisting of heating to a temperature exceeding a proposed operating temperature of the scintillator package, and placing the packaging material under pressure in a confined space until the packaging material is in final form.
Abstract:
Systems, methods, and devices for inelastic gamma-ray logging are provided. In one embodiment, such a method includes emitting neutrons into a subterranean formation from a downhole tool to produce inelastic gamma-rays, detecting a portion of the inelastic gamma-rays that scatter back to the downhole tool to obtain an inelastic gamma-ray signal, and determining a property of the subterranean formation based at least in part on the inelastic gamma-ray signal. The inelastic gamma-ray signal may be substantially free of epithermal and thermal neutron capture background.
Abstract:
Methods for pre-treating packaging materials of particular composition for use in conjunction with a scintillation crystal are disclosed. The packaging materials may comprise a reflecting material, an elastomer, a reflecting fluorocarbon polymer, a polymer or elastomer loaded with a reflecting inorganic powder (including a reflecting inorganic powder comprising a high reflectance material selected from the group comprising Al 2 O 3 , TiO 2 , BN, MgO, BaSO 4 and mixtures thereof), or a highly reflective metal foil selected from the group comprising Ag and Al that is chemically compatible with the scintillator crystal. The scintillator crystal may comprise a crystal selected from the group comprising NaI(Tl), LaBr 3 :Ce, LaCl 3 :Ce, La-halides, and La-mixed halides. The method includes subjecting a scintillator packaging material to a pre-treatment while in package form, said treatment selected from the group consisting of heating to a temperature exceeding a proposed operating temperature of the scintillator package, and placing the packaging material under pressure in a confined space until the packaging material is in final form.
Abstract:
Apparatus for determining properties of a borehole and a formation around the borehole. The apparatus comprising a source for generating nuclear particles, a detector for measuring a effect of the nuclear particles on a fluid flowing in the borehole and a second detector for measuring an effect of the nuclear particles on the formation. The source is arranged to generate the nuclear particles in a manner that enables the measuring of the first and the second detector to be performed simultaneously.
Abstract:
A nuclear tool includes a tool housing; a d-D neutron generator disposed in the tool housing; a d-T neutron generator disposed in the tool housing; and, optionally, a control circuit for controlling pulsing of the d-D neutron generator and the d-T neutron generator. A method for well-logging using a nuclear tool includes disposing the nuclear tool in a wellbore penetrating a formation; pulsing a d-D neutron generator to emit neutrons at a first energy level into the formation; pulsing a d-T neutron generator to emit neutrons at a second energy level into the formation; and measuring signals returning from the formation.
Abstract:
Method and system for analyzing electrical pulses contained in a pulse train signal representative of the interaction of x-ray bursts with a nuclear detector configured for subsurface disposal. The pulse train signal is sampled to form a digitized signal. The total energy deposited at the detector during an x-ray burst is determined from the digitized signal, and a count rate of x-ray pulses from the burst is determined. A subsurface parameter is determined using the total energy deposit.
Abstract:
A nuclear tool includes a tool housing; a d-D neutron generator disposed in the tool housing; a d-T neutron generator disposed in the tool housing; and, optionally, a control circuit for controlling pulsing of the d-D neutron generator and the d-T neutron generator. A method for well-logging using a nuclear tool includes disposing the nuclear tool in a wellbore penetrating a formation; pulsing a d-D neutron generator to emit neutrons at a first energy level into the formation; pulsing a d-T neutron generator to emit neutrons at a second energy level into the formation; and measuring signals returning from the formation.