Abstract:
This invention relates to a reducing agent supply device and an exhaust gas denitrification system using the same. The reducing agent supply device includes a reducing agent supply unit for supplying a reducing agent to a selective supply unit, a water supply unit for supplying water to the selective supply unit, the selective supply unit for selectively supplying any one of the reducing agent and water supplied from the reducing agent supply unit and the water supply unit to a spray unit, and the spray unit for spraying the reducing agent or water supplied from the selective supply unit, wherein the selective supply unit supplies water to the spray unit when the spray unit is blocked due to solidification of the reducing agent which remains behind therein because of a process in which the spray unit continuously sprays the reducing agent or a temporary malfunction of the device, thereby preventing blockage of the spray unit. Also an exhaust gas denitrification system using the device is provided.
Abstract:
Disclosed herein is an ultraviolet sterilizer having a vibration-proof function. The ultraviolet sterilizer includes an ultraviolet sterilization unit. The ultraviolet sterilization unit has an inlet through which ballast water is drawn thereinto, an outlet through which the ballast water is discharged therefrom, and an ultraviolet lamp located between the inlet and the outlet. The ultraviolet lamp applies ultraviolet rays to the ballast water. The ultraviolet sterilizer further includes a cap which supports each of the opposite ends of the ultraviolet sterilization unit, and a shock absorption unit which is elastically compressed at a first end thereof by the cap while a second end thereof compresses an end of the ultraviolet lamp. Thereby, even if the ultraviolet sterilization unit vibrates, the sleeve pipe or the ultraviolet lamp can be prevented from being damaged, and explosive gas which may cause the ultraviolet sterilizer to explode is also prevented from entering the cap.
Abstract:
Disclosed herein are a ballast water treatment system having a back-pressure formation unit and a control method thereof. Back pressure in a filtering unit is checked and formed during a back washing operation for a filter of a filtering unit, thus enabling efficient back washing operation. Both a method of physically filtering ballast water using the filter and a method of sterilizing ballast water using ultraviolet rays are used to treat ballast water, thus preventing secondary contamination due to byproducts, and preventing the contamination of a ballast tank. A flow rate of ballast water introduced into an ultraviolet treatment unit is controlled such that the efficiency of the ultraviolet treatment unit is not reduced, while back pressure is formed in the filtering unit, thus increasing the overall treatment efficiency of the ballast water treatment system. Further, the filtering unit or the ultraviolet treatment unit may be automatically washed.
Abstract:
The present invention relates to an a multi-cage type ballast water filtering apparatus having a function of automatically controlling simultaneous backwashing, and a method of automatically controlling the simultaneous backwashing. The apparatus includes a body, and filtering units connected to each other to form a packaged structure in the body. Each filtering unit includes a filter filtering ballast water, and an automatic washing unit backwashing the filter. The apparatus further includes a first pressure sensor measuring the pressure in space between the body and the filters, and a second pressure sensor installed on each of some of the filtering units to measure the pressure in the filter of the corresponding filtering unit. When a difference between pressures measured by the first and second pressure sensors exceeds a predetermined range, the automatic washing units of all of the filtering units are simultaneously operated.
Abstract:
Disclosed herein are a ballast water treatment system having a back-pressure formation unit and a control method thereof. Back pressure in a filtering unit is checked and formed during a back washing operation for a filter of a filtering unit, thus enabling efficient back washing operation. Both a method of physically filtering ballast water using the filter and a method of sterilizing ballast water using ultraviolet rays are used to treat ballast water, thus preventing secondary contamination due to byproducts, and preventing the contamination of a ballast tank. A flow rate of ballast water introduced into an ultraviolet treatment unit is controlled such that the efficiency of the ultraviolet treatment unit is not reduced, while back pressure is formed in the filtering unit, thus increasing the overall treatment efficiency of the ballast water treatment system. Further, the filtering unit or the ultraviolet treatment unit may be automatically washed.
Abstract:
A filtering device for treating ballast water and more particularly, a multicage-type device for filtering ballast water to prevent back pressure, wherein the multicage-type device for filtering ballast water includes a back pressure prevention tank on a backwash line for backwashing and discharging foreign substances that are inside a filter of the device for filtering, so that backwash water and the foreign substances in the backwash line are preliminarily stored in the back pressure prevention tank thereby preventing an increase of back pressure and preventing an increase of the back pressure on the backwash line by always maintaining a level of water inside the back pressure prevention tank at lower than an inlet port that is connected to the backwash line.
Abstract:
Disclosed herein is an apparatus having a double wiper structure for sterilizing ballast water. Each wiper for use in removing foreign substances from an ultraviolet lamp has a double structure including a main wiper part and auxiliary wiper parts. The auxiliary wiper parts are disposed on opposite sides of the main wiper part so that when the wiper body is moved forward or backward, the corresponding auxiliary wiper part primarily removes foreign substances before the main wiper part wipes the ultraviolet lamp unit. Each auxiliary wiper part includes an inclined protrusion and a pointed part so that friction between the surface of the ultraviolet lamp and the auxiliary wiper part can be minimized. The main wiper part includes a first blade and a second blade that are respectively disposed on opposite sides of a depression formed in an inner circumferential surface of the main wiper part.
Abstract:
This invention relates to a reducing agent supply device and an exhaust gas denitrification system using the same. The reducing agent supply device includes a reducing agent supply unit for supplying a reducing agent to a selective supply unit, a water supply unit for supplying water to the selective supply unit, the selective supply unit for selectively supplying any one of the reducing agent and water supplied from the reducing agent supply unit and the water supply unit to a spray unit, and the spray unit for spraying the reducing agent or water supplied from the selective supply unit, wherein the selective supply unit supplies water to the spray unit when the spray unit is blocked due to solidification of the reducing agent which remains behind therein because of a process in which the spray unit continuously sprays the reducing agent or a temporary malfunction of the device, thereby preventing blockage of the spray unit. Also an exhaust gas denitrification system using the device is provided.
Abstract:
Disclosed herein is an apparatus having a double wiper structure for sterilizing ballast water. Each wiper for use in removing foreign substances from an ultraviolet lamp has a double structure including a main wiper part and auxiliary wiper parts. The auxiliary wiper parts are disposed on opposite sides of the main wiper part so that when the wiper body is moved forward or backward, the corresponding auxiliary wiper part primarily removes foreign substances before the main wiper part wipes the ultraviolet lamp unit. Each auxiliary wiper part includes an inclined protrusion and a pointed part so that friction between the surface of the ultraviolet lamp and the auxiliary wiper part can be minimized. The main wiper part includes a first blade and a second blade that are respectively disposed on opposite sides of a depression formed in an inner circumferential surface of the main wiper part.
Abstract:
A system for denitrifying exhaust gas, including a urea water injection unit for supplying urea water and air to a reaction chamber, wherein the urea water injection unit includes: an air supply unit for supplying external air to an injector through an air supply line; a urea water supply unit for supplying urea water to the injector through a urea water supply line; a water supply unit for supplying water to the injector through a water supply line connected to one side of the urea water supply line; a flow control valve for selectively supplying water or urea water to the injector through the urea water supply line; and the injector respectively connected to the air supply unit and the urea water supply unit to selectively discharge air, urea water or water to the reaction chamber through an injection nozzle.