Abstract:
A filter with installation integrity permits fluid flow only in a first installation condition and not in a second undesired or mis-installation condition, including improper alignment or mounting of a filter element in a housing, an incorrect replacement filter element, absence of a filter element, and an incorrect housing cover. A magnetically actuated valve has a piston controlling fluid flow according to installation condition.
Abstract:
A parallel flow filter-in-filter design for a filter system is provided. The filter-in-filter design provides two distinctly parallel or independent flow paths within a filter assembly in a single housing or shell. The filter assembly includes a first outer filter element radially spaced apart from a second inner filter element. A centertube and a funnel shaped passageway housed within the centertube are provided in a space between the first outer filter element and the second inner filter element. The centertube and funnel shaped passageway work in tandem to provide two distinct parallel or independent flow paths within the filter assembly. The funnel shaped passageway is provided generally below the second inner filter element within the centertube.
Abstract:
Disclosed are systems, methods, and algorithms for monitoring and indicating filter life. In particular, the disclosed systems, methods, and algorithms may be utilized for monitoring and indicating the useful life of a filter in an internal combustion engine.
Abstract:
A water detection system in a fuel delivery system of an engine that helps to limit the occurrence of water related corrosion or damage to various engine components by detecting if a fuel supply has a high level of water content, and providing a notice that appropriate action should be taken. The system includes a fuel filtration module, a water sensor to sense high water content of a fuel supply, and a control device connected to the water sensor and receiving inputs therefrom relating to the water sensed by the sensor. The system also includes an indication source connected to the control device for communicating that a problem with the fuel exists if high water content is detected.
Abstract:
A water detection system in a fuel delivery system of an engine that helps to limit the occurrence of water related corrosion or damage to various engine components by detecting if a fuel supply has a high level of water content, and providing a notice that appropriate action should be taken. The system includes a fuel filtration module, a water sensor to sense high water content of a fuel supply, and a control device connected to the water sensor and receiving inputs therefrom relating to the water sensed by the sensor. The system also includes an indication source connected to the control device for communicating that a problem with the fuel exists if high water content is detected.
Abstract:
An upper endcap of a fuel filter cartridge includes a skirt, an axially extending pin surrounded by the skirt, and a plurality of ribs that define fluid flow channels leading to the pin. The pin is extendable through an axially facing fluid opening disposed on a filter head for actuating a valve to an open position allowing fluid to flow through the axially facing opening and exit from a fluid outlet opening. The valve can include a hole that receives the pin therein to help stabilize the valve when the valve is actuated open.
Abstract:
Fluid flow surge protection is provided for a filter by increasing upstream plenum fluid volume. In one embodiment, an accumulator or transfer mechanism transfers or trades downstream plenum fluid volume to or for upstream plenum fluid volume.
Abstract:
A fuel heater module and a water-in-fuel sensor module are disclosed that are configured to be connected to an outside surface of a filter assembly. The fuel heater module includes an inlet port and an outlet port with a heating element positioned in the fluid path between the inlet and outlet. A thermostat is included for controlling operation of the heating element. The water-in-fuel sensor module is configured to detect water in the filter housing that it may be drained from the filter housing. Both modules are configured to be attached to an outside surface of the filter housing thereby being readily replaceable.
Abstract:
A fluid filter housing for receipt of a fluid filter element and for threaded attachment to a mounting base includes a unitary, molded plastic shell, an annular, threaded nutplate, and a plastic weld ring. The plastic shell defines a hollow interior for receipt of the fluid filter element. The plastic shell also defines one side of an O-ring groove. The threaded nutplate includes a groove-side surface that defines a second side of the O-ring groove. The weld ring is securely joined to the threaded nutplate by co-molding and is securely joined to the shell by a spin weld process. The weld ring provides a third surface for the O-ring groove. As such, three separate components are used to create an inwardly opening three-sided annular groove for receipt of an annular seal for sealing an interface between the fluid filter housing and the mounting base.
Abstract:
Improvements to "no filter, no run" fluid filtration systems are described. In one example, a filter includes a movable pin cage that has a first pre-installation position adjacent the bottom end plate and is temporarily connected thereto by a snap connection system, and a second position adjacent the upper end plate where it performs a valve interaction function. In another example, a filter includes non-centered valve pins that are rotatable relative to an upper end plate of the filter.