Abstract:
An AI control device, which identifies individual users from a plurality of users to receive input data, and is connectable to a server device that generates a trained model based on input data for each user, includes a control unit, and a communication unit connected to the server device. The control unit acquires input data, associates acquired input data and identifying information used to identify the user of the AI control device, and sends the data and information to the server device via the communication unit. The control unit uses the sent acquired input data to execute a trained model that is generated separately from trained models of other users by the server device, and that learns characteristics of acquired input data and detects input data having the same characteristics from unknown input data.
Abstract:
This channel simulation device is provided with a memory for storing a distance calculation parameter and reception strength calculation parameter, and a processor for estimating desired-wave reception strength and interfering-wave reception strength on the basis of the distance calculation parameter and the reception strength calculation parameter. The desired-wave reception strength refers, for each set of two areas selected from a plurality of areas, to reception strength when a transmission signal transmitted from the wireless microphone of one area is received by a receiver in the one area. The interfering-wave reception strength refers to reception strength when a transmission signal transmitted from the wireless microphone of the other area is received by the receiver in the one area.
Abstract:
A microphone array includes an n microphone units (where n is an integer equal to or larger than three). A first one of the microphone units includes three microphones ((14-1 through 14-3)) arranged in line at equal intervals. An m-th microphone unit (where m is a positive integer expressed by 1
Abstract:
Provided is a device for measuring the concentration of a dissolved component, whereby the concentration of a plurality of types of dissolved components in water can be measured easily and with good precision. A device for measuring the concentration of a dissolved component has: a cell assembly 3 in which a plurality of cells 1 are connected by a joint member 2 and integrated, and a measurement reagent is accommodated in each of the cells 1; and a measuring main body 5 having a measurement unit (light-emitting element 8 and light-receiving element 9) for measuring transmittance and absorbance, the cells 1 of the cell assembly 3 being inserted into the measurement unit. A cap 4 is detachably mounted to each cell 1.
Abstract:
Provided is a loudspeaker system capable of easily determining control parameters for controlling the directional characteristics of a speaker set including two or more speaker units. The loudspeaker system is configured to include: a speaker set 11 including two or more speaker units 2; a camera 15 adapted to photograph an acoustic space of the speaker set 11; a monitor 22 adapted to display a camera image 30 photographed by the camera 15; and a directional control parameter generating part 24 adapted to generate directional control parameters providing the directional characteristics of the speaker set 11. The directional control parameter generating parts 24 includes: a target position designation part 101 adapted to, on the basis of user operations, designate target positions 32 on the camera image 30; a directional control angle calculation part 103 adapted to, on the basis of the target positions 32, obtain directional control angles θ with respect to a front direction of the speaker set 11; and a directional control parameter determination part 104 adapted to, on the basis of the directional control angles θ, determine the directional control parameters.
Abstract:
A quantification method includes a calibration curve preparing step to measure a standard solution, which has been prepared by adding sodium ions so that a sodium ion content of the standard solution is equaled to a sodium ion content of a sample to be measured with a method employing a reaction that activates a limulus reagent and/or a biochemical luminescent reaction caused by ATP, luciferin, and luciferase, and to prepare a calibration curve that represents a relation between a measurement value and an amount of a component to be measured; a sample measuring step to measure the sample to be measured with a method being the same as that used in the calibration curve preparing step; and a quantifying step to find, by using the calibration curve, an amount of the component to be measured in the sample to be measured from a measurement value in the sample measuring step.
Abstract:
An object is to provide a public address device that effectively prevents occurrence of howling without a drop of the gain. A public address device 100 includes: a loudspeaker 1 that generates a reproduced sound on the basis of a loudspeaker driving signal u(n); a microphone 2 that collects the reproduced sound and an input sound v(n) to generate a microphone-collected-sound signal y(n); a first filter 301 that generates, on the basis of the loudspeaker driving signal u(n), a pseudo echo signal e(n); an echo-cancelling unit 302 that obtains a difference between the microphone-collected-sound signal y(n) and the pseudo echo signal e(n) to generate an echo-cancelled signal d(n); a second filter 311 that whitens the input sound v(n) included in the loudspeaker driving signal u(n); a third filter 312 that whitens the input sound v(n) included in the microphone-collected-sound signal y(n); a first adaptive filter 313 that uses, as a reference signal, an output signal output from the second filter 311, and uses, as a desired signal, an output signal output from the third filter 311, and estimates a propagation characteristic Wo from the loudspeaker 1 to the microphone 2; a unit that repeatedly updates a filter coefficient W of the first filter 301 on the basis of a filter coefficient W identified by the first adaptive filter 313; and a frequency shifting unit 32 that performs a frequency shift on the echo-cancelled signal d(n) to generate the loudspeaker driving signal u(n).