-
公开(公告)号:CN114643287B
公开(公告)日:2022-08-02
申请号:CN202210559413.8
申请日:2022-05-23
IPC: B21B37/28
Abstract: 本发明的一种基于板形闭环调节量的弯辊力输出控制方法,依据PI控制器的设定原理,分别建立工作辊弯辊闭环反馈控制和中间辊弯辊闭环反馈控制的PI控制方程及其离散计算表达式。利用板形预设定系统计算数据和板形闭环反馈控制系统的实测数据,更改带钢规格变化时弯辊闭环反馈控制的控制量的设置方式,使弯辊闭环反馈控制的控制量在带钢宽度或厚度变化时实现清零功能。利用焊缝过四机架信号、助卷皮带信号,建立在剪切时弯辊闭环反馈控制的控制量的保持功能。
-
公开(公告)号:CN112894489B
公开(公告)日:2021-12-21
申请号:CN202110120103.1
申请日:2021-01-28
Applicant: 东北大学
Abstract: 本发明提供一种基于形状识别的宽厚板优化剪切方法,采集待剪切宽厚板的图像,并根据宽厚板的图像信息提取宽厚板边缘轮廓的数据点,根据宽厚板的切头长度、切尾长度计算宽厚板的有效长度;然后根据宽厚板边缘轮廓的数据点计算宽厚板的侧弯量和有效宽度;最后根据宽厚板的平面形状特征和子板的订单信息制定优化剪切策略,本发明能有效、快速的对每一块钢板进行决策,包括根据平面形状特点判断该钢板是否需要下线火切,避免不需要的加工处理,还可以计算钢板粗分位置,结合激光测速仪精确剪切可以提高成材率,节省人工及管理成本,适用于高速运行的宽厚板的自动剪切操作。
-
公开(公告)号:CN113219903A
公开(公告)日:2021-08-06
申请号:CN202110497213.X
申请日:2021-05-07
Applicant: 东北大学
Abstract: 本发明提供一种基于深度视觉的钢坯最优剪切控制方法及系统。本发明包括将深度相机设置好,设定世界坐标系;标定深度相机的参数;采集钢坯的RGB和深度视图;通过针孔相机模型,得到每个像素点的三维坐标,然后通过直通滤波和离群点去除进行预处理;使用随机采样一致性算法拟合出钢坯上表面的平面,然后将平面投影到2D平面,再采用中心扩展法计算出最优剪切线;根据钢坯的移动速度与待剪切位置头部坐标,获得头部和剪切刀口的距离,计算出控制剪切头剪切的时刻。本发明利用图像信息解决钢坯头尾部的剪切线检测问题,达到节约能源和材料的目的,深度相机得到的世界坐标精度高,省却了复杂的标定过程,布置简单。
-
公开(公告)号:CN112894489A
公开(公告)日:2021-06-04
申请号:CN202110120103.1
申请日:2021-01-28
Applicant: 东北大学
Abstract: 本发明提供一种基于形状识别的宽厚板优化剪切方法,采集待剪切宽厚板的图像,并根据宽厚板的图像信息提取宽厚板边缘轮廓的数据点,根据宽厚板的切头长度、切尾长度计算宽厚板的有效长度;然后根据宽厚板边缘轮廓的数据点计算宽厚板的侧弯量和有效宽度;最后根据宽厚板的平面形状特征和子板的订单信息制定优化剪切策略,本发明能有效、快速的对每一块钢板进行决策,包括根据平面形状特点判断该钢板是否需要下线火切,避免不需要的加工处理,还可以计算钢板粗分位置,结合激光测速仪精确剪切可以提高成材率,节省人工及管理成本,适用于高速运行的宽厚板的自动剪切操作。
-
公开(公告)号:CN114822584B
公开(公告)日:2024-10-25
申请号:CN202210439737.8
申请日:2022-04-25
Applicant: 东北大学
IPC: G10L21/0272 , G10L21/0216 , G10L21/028 , G06F17/16 , G06F17/14
Abstract: 本发明的一种基于积分改进广义互相关的传动装置信号分离方法是将广义互相关算法与非负矩阵分解算法相结合的一种新的盲源分离方法,进行分离不同传动装置的声音信号。将广义互相关算法结合非负矩阵分解算法,利用广义互相关算法获得到达时间差,判断源的数量;再结合非负矩阵分解,获得具体的字典原子是来自于哪个源这项信息,从而为生成不同源的掩码矩阵提供事实依据;使用积分法改进广义互相关,提高到达时间差估计的准确度;设计一种新的非负矩阵分解初始化方法,降低计算非负矩阵分解的时间。本发明方法解决了其他盲源分离方法依赖理想数学模型或者依赖训练神经网络的问题。
-
公开(公告)号:CN112767380B
公开(公告)日:2024-02-02
申请号:CN202110119070.9
申请日:2021-01-28
Applicant: 东北大学
IPC: G06T7/00 , G06T7/13 , G06T7/136 , G06T7/80 , G06T5/60 , G06T5/80 , G06T5/90 , G06T5/30 , G06N3/048 , G06N3/08 , G06N3/126
Abstract: 本发明提供一种宽厚板端部形状预测方法,首先提取宽厚板生产过程中与端部形状相关的生产数据,然后提取宽厚板轮廓点数据,得到宽厚板端部形状特征量,并对数据进行异常值检测,将去除异常值后的数据归一化并划分为训练集和测试集;最后确定最佳人工神经网络结构,采用遗传算法优化神经网络迭代过程,用训练集进行模型训练,利用测试集测试所建立模型的泛化性能。本方法利用宽厚板轮廓数据对宽厚板端形状进行直接的量化表示,并用人工智能方法进行预测,克服的传统方法对影响因素考虑不全的缺点,具有较高的预测精度,同时具有较快的计算速度。(56)对比文件阮金华.热轧宽厚板平面形状优化与成材率提高的数值模拟研究《.中国优秀博士学位论文全文数据库 工程科技II辑》.2015,B022-162.
-
公开(公告)号:CN113219903B
公开(公告)日:2022-08-19
申请号:CN202110497213.X
申请日:2021-05-07
Applicant: 东北大学
Abstract: 本发明提供一种基于深度视觉的钢坯最优剪切控制方法及系统。本发明包括将深度相机设置好,设定世界坐标系;标定深度相机的参数;采集钢坯的RGB和深度视图;通过针孔相机模型,得到每个像素点的三维坐标,然后通过直通滤波和离群点去除进行预处理;使用随机采样一致性算法拟合出钢坯上表面的平面,然后将平面投影到2D平面,再采用中心扩展法计算出最优剪切线;根据钢坯的移动速度与待剪切位置头部坐标,获得头部和剪切刀口的距离,计算出控制剪切头剪切的时刻。本发明利用图像信息解决钢坯头尾部的剪切线检测问题,达到节约能源和材料的目的,深度相机得到的世界坐标精度高,省却了复杂的标定过程,布置简单。
-
公开(公告)号:CN114643287A
公开(公告)日:2022-06-21
申请号:CN202210559413.8
申请日:2022-05-23
IPC: B21B37/28
Abstract: 本发明的一种基于板形闭环调节量的弯辊力输出控制方法,依据PI控制器的设定原理,分别建立工作辊弯辊闭环反馈控制和中间辊弯辊闭环反馈控制的PI控制方程及其离散计算表达式。利用板形预设定系统计算数据和板形闭环反馈控制系统的实测数据,更改带钢规格变化时弯辊闭环反馈控制的控制量的设置方式,使弯辊闭环反馈控制的控制量在带钢宽度或厚度变化时实现清零功能。利用焊缝过四机架信号、助卷皮带信号,建立在剪切时弯辊闭环反馈控制的控制量的保持功能。
-
公开(公告)号:CN112439794B
公开(公告)日:2021-09-24
申请号:CN202011411870.X
申请日:2020-12-04
Applicant: 东北大学
IPC: B21B37/38
Abstract: 本发明涉及一种基于LSTM的热轧弯辊力预测方法,采集不锈钢轧机热轧工艺的最终机架轧制数据并划分为训练集traindata和测试集testdata;对traindata进行归一化处理;构造矩阵P;将矩阵P的最后一行作为训练集的标签即真实值;对网络的输出值和真实值计算并更新;网络训练完成后,取出LSTM网络的最后m个输出数据作为下一时刻的输入,得到网络下一时刻的输出,即为下一时刻的弯辊力预测值;重复上述步骤直至获得足够数目的预测数据;将处理后的数据与testdata中的真实值进行比较,检验网络的有效性。本发明方法与传统LSTM网络相比,加入了更新机制后的网络模型准确度有所提升,且网络更加稳定。
-
公开(公告)号:CN112439794A
公开(公告)日:2021-03-05
申请号:CN202011411870.X
申请日:2020-12-04
Applicant: 东北大学
IPC: B21B37/38
Abstract: 本发明涉及一种基于LSTM的热轧弯辊力预测方法,采集不锈钢轧机热轧工艺的最终机架轧制数据并划分为训练集traindata和测试集testdata;对traindata进行归一化处理;构造矩阵P;将矩阵P的最后一行作为训练集的标签即真实值;对网络的输出值和真实值计算并更新;网络训练完成后,取出LSTM网络的最后m个输出数据作为下一时刻的输入,得到网络下一时刻的输出,即为下一时刻的弯辊力预测值;重复上述步骤直至获得足够数目的预测数据;将处理后的数据与testdata中的真实值进行比较,检验网络的有效性。本发明方法与传统LSTM网络相比,加入了更新机制后的网络模型准确度有所提升,且网络更加稳定。
-
-
-
-
-
-
-
-
-