-
公开(公告)号:CN113125552A
公开(公告)日:2021-07-16
申请号:CN202010027371.4
申请日:2020-01-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N29/02 , G01N29/036 , G01N5/00
Abstract: 本发明公开了一种测定固液界面上动力学及热力学参数的方法,根据多种不同待测浓度配体溶液各自对应的频率‑时间曲线图和两种不同温度下另一待测浓度的配体溶液的频率‑时间曲线图,通过分析微悬臂梁传感器输出频率‑时间曲线并计算,得到固液界面上核酸适配体与其配体的动力学及热力学参数(结合/解离平衡常数KA/KD,吉布斯自由能△G°,表面覆盖度θ,结合/解离速率常数ka/kd,反应活化能Ea)。本方法克服了传统方法仪器昂贵,操作繁琐,参数测定单一等缺点,具有灵敏度高,成本低,操作简单快捷,无需标记与校正,可有效避免系统误差,一次性测定相关参数等优势,适用于多种核酸适配体与其配体的动力学与热力学参数的测定。
-
公开(公告)号:CN107561201B
公开(公告)日:2021-07-09
申请号:CN201610507286.1
申请日:2016-06-30
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N30/60
Abstract: 本发明提供一种高分离效率的硅基微气相色谱柱及其制备方法,所述制备方法包括:1)于硅衬底上制作微沟道及微流控端口;2)制作掩膜层保护所述硅衬底上的键合面;3)于所述微沟道内构筑纳米介孔氧化硅;4)将一封装盖板键合于所述硅衬底的键合面上;5)基于所需分离的组分于所述纳米介孔氧化硅表面形成相应的修饰材料。由于纳米介孔氧化硅具有较大的比表面积及孔容,且具有较好的热稳定性及机械强度,本发明将其构筑于硅基微气相色谱柱内,能极大地提高色谱柱的分离效率;纳米介孔氧化硅表面具有高密度的硅羟基(Si‑OH),可根据分离对象的不同在其表面进一步构筑具有不同分离功能的单分子层,实现所需的分离效果。
-
公开(公告)号:CN110040682B
公开(公告)日:2021-06-18
申请号:CN201910318111.X
申请日:2019-04-19
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种高灵敏度加速度传感器结构的制备方法,包括:提供衬底;于衬底正面进行硼离子注入;于衬底的正面及背面依次形成第一氧化硅层及低应力氮化硅层;于衬底的正面形成释放窗口;形成深槽;形成内部刻蚀缓冲腔体;于释放窗口的侧壁、内部刻蚀缓冲腔体的侧壁及内部刻蚀缓冲腔体的上下表面形成低应力多晶硅层;于低应力多晶硅层表面形成氧化硅钝化层;于衬底的背面形成沟槽;去除位于内部刻蚀缓冲腔体底部的氧化硅钝化层;于衬底的正面制备引线孔、金属引线及焊盘;提供键合衬底,将键合衬底键合于所述衬底的背面;释放悬臂梁及质量块。本发明可以避免对悬臂梁过刻蚀,从而可以确保任意尺寸悬臂梁的厚度的可控性及均匀性。
-
公开(公告)号:CN110040678B
公开(公告)日:2021-06-18
申请号:CN201910313786.5
申请日:2019-04-18
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种微传感器及其制备方法,微传感器包括:衬底,衬底的上表面形成有凹槽;热匀散结构层,悬置于凹槽的上方;支撑梁,位于凹槽的上方,且位于热匀散结构层与凹槽的侧壁之间;支撑梁一端与热匀散结构层相连接,另一端与衬底相连接;主体支撑层,至少位于热匀散结构层的上表面;限定环,位于主体支撑层的下表面,且位于热匀散结构层的外围;测试电极,位于主体支撑层的上表面;加热元件,位于主体支撑层的上表面;焊盘,位于衬底的上表面上,且位于凹槽的外侧。本发明的微传感器中加热元件下方设有热匀散结构,增强加热区域的散热能力,使得加热区域的温度均匀性好;加热元件与测试电极之间绝缘隔离,可以避免漏电,确保微传感器的性能。
-
公开(公告)号:CN109682711B
公开(公告)日:2021-03-23
申请号:CN201910067922.7
申请日:2019-01-24
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种用于TEM构效关联直接原位表征的芯片及其制作方法,芯片包括主芯片及辅芯片,其中,主芯片包括:具有观测孔的悬臂梁、主芯片凹槽、主芯片窗口及气孔;辅芯片包括:辅芯片窗口;通过悬臂梁的谐振用以检测位于悬臂梁上的待测样品的质量变化;通过将主芯片及辅芯片相对设置,并分别固定于TEM样品杆上,以在主芯片、辅芯片及TEM样品杆之间形成闭合空间,并通过辅芯片窗口、观测孔及主芯片窗口观测位于悬臂梁上的待测样品的形貌变化。本发明可以在TEM内实现对同一待测样品的形貌变化观测及质量变化检测,以进行直接、原位、实时表征,可广泛应用于纳米材料在气固反应过程中的TEM原位表征。
-
公开(公告)号:CN112461312A
公开(公告)日:2021-03-09
申请号:CN202011332943.6
申请日:2020-11-24
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种热堆式气体质量流量传感器及其制造方法,包括:(111)单晶硅衬底;与衬底相连接的隔热薄膜,且共同围成隔热腔体;加热元件;一对呈“<>”状且对称分布于加热元件两侧的热电堆,每个热电堆尖端处两条轮廓线的夹角为120°,热电堆由至少一对悬挂于隔热薄膜下表面的单晶硅热偶臂和位于隔热薄膜上表面的多晶硅热偶臂组成的单晶硅‑多晶硅热偶对构成,两个热偶臂及热电堆与加热元件之间通过隔离槽隔离。本发明选择塞贝克系数较大的单晶硅及多晶硅,且可在有限的尺寸下将热偶臂的等效长度做的更长,提高传感器的灵敏度;另外还可增大单晶硅‑多晶硅热偶对热端与单晶硅加热元件之间的间距,调整传感器量程和测量精度,满足不同应用需求。
-
公开(公告)号:CN111938610A
公开(公告)日:2020-11-17
申请号:CN202010662146.8
申请日:2020-07-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: A61B5/02
Abstract: 本发明涉及一种气囊一体化的脉诊仪触觉传感阵列结构,包括气囊、PCB线路软板,所述气囊与导气管连通,所述气囊的人体接触面上开设有测试区域,所述测试区域内嵌入有与所述PCB线路软板相连的传感器阵列;所述传感器阵列包括多个传感器,所述传感器的敏感面与所述气囊的人体接触面近似在一个平面。本发明能够提高测量的精确度。
-
公开(公告)号:CN110819698A
公开(公告)日:2020-02-21
申请号:CN201911030850.5
申请日:2019-10-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C12Q1/6851 , C12M1/38 , C12M1/34
Abstract: 本发明公开了一种高压液体浸入式数字PCR方法、数字PCR芯片及其制备方法,该数字PCR方法包括以下步骤:S1.将经过进样处理的数字PCR芯片浸入高压反应室的液体中;S2.排空高压反应室内的空气,对排空空气后的高压反应室增压;S3.将增压后的高压反应室放到PCR仪上进行PCR反应;S4.对PCR反应后的高压反应室冷却;S5.将冷却后的高压反应室降压;S6.将高压反应室中的数字PCR芯片取出,对数字PCR芯片进行荧光信号分析。本发明芯片进样不依赖泵、阀等复杂设备,也不需要使用高粘度热聚合分离油,进样完成后芯片不需要密封,操作简单;芯片厚度小,导热快,反应迅速;芯片结构简单,容易制作,成本低,自动化程度高。
-
公开(公告)号:CN107994807B
公开(公告)日:2020-02-14
申请号:CN201610947457.2
申请日:2016-10-26
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H02N2/18
Abstract: 本发明提供一种基于铁磁悬臂梁的低振动阈值监控二级能量采集器,包括固定架,及固定在固定架内的第一级低频振子和第二级高频振子;第一级低频振子包括:第一端固定在固定架一侧,第二端为自由端的第一悬臂梁;位于第一悬臂梁第二端第一表面的永磁体;位于第一悬臂梁第二端第二表面或永磁体上表面的质量块;第二级高频振子包括:第一端固定在固定架另一侧,第二端为自由端的第二悬臂梁;位于第二悬臂梁第一表面的压电薄膜;其中,第一、第二悬臂梁为铁磁悬臂梁,且第一悬臂梁的第二端和第二悬臂梁的第二端之间设有预设距离。通过本发明所述的二级能量采集器,解决了现有技术中二级能量采集器功能单一、以及感应小振幅、低加速度振动效率低的问题。
-
公开(公告)号:CN106549649B
公开(公告)日:2019-07-19
申请号:CN201510591179.7
申请日:2015-09-17
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种N型重掺杂恒温控制振荡器及其恒温控制方法,包括:谐振结构、锚点、加热梁及温度传感器;谐振结构包括N型重掺杂纵向振动梁及第一电极;N型重掺杂纵向振动梁及第一电极均沿单晶硅 晶向族方向分布;锚点位于谐振结构的两侧;加热梁贯穿N型重掺杂纵向振动梁;温度传感器位于锚点表面。本发明中沿 晶向族的N型重掺杂结构的频率温度系数存在过零点,频率温度系数过零点的温度由掺杂浓度决定;通过调整N型掺杂浓度,可以使 晶向族谐振频率温度系数过零点略高于振荡器工作温区的上限;设置贯穿谐振结构的加热梁,在加热梁上通电流即可实现恒温控制,使得N型重掺杂恒温控制振荡器具有较好的性能稳定性及较好温度特性。
-
-
-
-
-
-
-
-
-