一种正电性几丁质纳米纤维水凝胶及气凝胶的制备方法

    公开(公告)号:CN105820352A

    公开(公告)日:2016-08-03

    申请号:CN201610208748.X

    申请日:2016-04-06

    CPC classification number: C08J3/075 C08B37/003 C08J9/28 C08J2305/08 C08L5/08

    Abstract: 本发明公开了一种正电性几丁质纳米纤维水凝胶及气凝胶的制备方法,包括1)取几丁质原料进行预处理,获得几丁质浆料;2)几丁质浆料经常温或高温碱处理,获得部分脱乙酰基几丁质;3)部分脱乙酰基几丁质在弱酸性水溶液中经机械处理制备得到正电性几丁质纳米纤维分散液;4)正电性几丁质纳米纤维分散液经碱性凝固浴处理制备得到物理交联的正电性几丁质纳米纤维水凝胶;5)正电性几丁质纳米纤维水凝胶经干燥脱水制备得到正电性几丁质纳米纤维气凝胶。本方法简单且可操作性强,可低成本的实现水凝胶制备;所制备的几丁质纳米纤维水凝胶、气凝胶材料具有形态好,浓度低,强度高、生物相容且无毒无害的优点,在生物医药方面具有良好的应用前景。

    一种超薄木质纤维膜的制备方法

    公开(公告)号:CN105754121A

    公开(公告)日:2016-07-13

    申请号:CN201610239044.9

    申请日:2016-04-14

    CPC classification number: C08J5/18 C08J2397/02 G01N29/022 G01N2291/022

    Abstract: 本发明涉及一种超薄木质纤维膜的制备方法,属于生物基材料开发领域。目的是为了提供一种工艺简单、生产成本低的超薄木质纤维膜的制备方法。采用行星式球磨机对木质纤维原料球磨处理,将经球磨后的木质纤维原料溶于质量分数为8%的LiCl/DMSO溶剂体系,室温下磁力搅拌2~48h至完全溶解呈透明状态。然后配制浓度为0.1~2%的木质纤维溶液,通过旋涂法将木质纤维溶液涂敷在QCM传感器金电极表面并待其自然干燥后在水中多次置换洗涤,通过真空干燥后即可制备得到厚度为5~20nm的超薄木质纤维膜。

    一种纤维素基3D打印线材的制备方法

    公开(公告)号:CN105295106A

    公开(公告)日:2016-02-03

    申请号:CN201510881126.9

    申请日:2015-12-03

    Abstract: 本发明涉及一种纤维素基3D打印线材的制备方法,属于生物质基3D打印材料领域。目的是为了提供一种生产成本低、工业化容易实施的生物质基3D打印材料的制备方法。将纤维素原料经过聚乙二醇(PEG;MW=400)结合机械处理后,制得小于10μm的纤维素聚乙二醇分散液,用二氯甲烷洗去聚乙二醇得到纤维素的二氯甲烷悬浮液,加入一定量的硅烷偶联剂进行表面硅烷化改性。将改性的纤维素、增塑剂聚乙二醇、增韧剂溶液加到一定浓度的聚乳酸的二氯甲烷溶液中,混合均匀后,通过冷凝装置回收除去二氯甲烷溶剂。最后在一定温度下通过线型挤塑机挤塑制得纤维素基3D打印线材。

    一种提高纳米纤维干燥再分散效率的方法

    公开(公告)号:CN115160594B

    公开(公告)日:2025-03-07

    申请号:CN202210936370.0

    申请日:2022-08-05

    Abstract: 本发明公开了一种提高纳米纤维干燥再分散效率的方法,属于纳米纤维干燥领域。本发明提供的一种提高纳米纤维干燥再分散效率的方法包括如下步骤:(1)将纳米纤维素/纳米几丁质分散液经干燥处理;(2)然后经过水润涨0.5h‑12h处理;(3)最后经再分散处理获得具有高再分散效率的、稳定的纳米纤维素/纳米几丁质分散液。还可向步骤(1)纳米纤维分散液中添加木质素磺酸钠,进一步提高纳米纤维素干燥后的再分散效率。本发明制备的再分散纳米纤维分散液稳定性好,可保持干燥前纳米纤维分散液的透明度和纳米纤维的纳米尺寸,可以提高压裂液的悬浮稳定性。本发明方法简便,易操作,成本低,可降低纳米纤维存储运输成本,有利于纳米纤维工业化大规模应用。

    一种荧光几丁质纳米纤维及其制备方法与应用

    公开(公告)号:CN115262031B

    公开(公告)日:2024-04-02

    申请号:CN202211036478.0

    申请日:2022-08-26

    Abstract: 本发明公开了一种荧光几丁质纳米纤维及其制备方法与应用,包括以下步骤:(1)几丁质经生物法或碱处理脱乙酰,再经固液分离得到富氨基几丁质;(2)将富氨基几丁质与1‑苯基‑2丙炔‑1‑酮加入水中搅拌反应,经固液分离、洗涤得到黄色荧光几丁质;(3)黄色荧光几丁质经过机械处理得到黄色荧光几丁质纳米纤维。本发明利用富氨基几丁质的碱性氨基优先催化其表面羟基荧光功能化,促进几丁质高效纳米化,获得荧光几丁质纳米纤维。反应条件温和、反应简便,功能化效率高;所制备的荧光几丁质纳米纤维得率高、尺寸均匀、荧光性能强,可广泛应用于生物、医药、光学、荧光、防伪、吸附和复合材料增强领域。

    一种化学交联纳米纤维素复合柔性导电材料及其制备方法

    公开(公告)号:CN115197371B

    公开(公告)日:2024-03-15

    申请号:CN202210941157.9

    申请日:2022-08-05

    Abstract: 本发明公开了一种化学交联纳米纤维素复合柔性导电材料及其制备方法。该制备方法包括以下步骤:采用具有催化改性功能的二元羧酸或多元羧酸低共熔溶剂和含双键的环氧类单体对纤维素进行高温润胀,然后将所述纤维素原料经机械处理得到改性纳米纤维素分散液;向分散液中加入引发剂进行快速聚合,制备得到化学交联纳米纤维素复合柔性导电材料。本发明反应过程绿色环保、聚合速度快,具有工业化前景;可在纤维素表面引入双键交联点,使纤维素与柔性聚合物基材产生化学交联,进一步实现复合柔性导电材料的应力和应变同时提升;所述复合材料可广泛应用于软体机器人、可穿戴传感器和可拉伸元器件等领域。

    微纳木质纤维素复合材料的制备方法、复合材料及应用

    公开(公告)号:CN113136038B

    公开(公告)日:2022-11-15

    申请号:CN202110346530.1

    申请日:2021-03-31

    Abstract: 本发明公开了微纳木质纤维素复合材料的制备方法、复合材料及应用,该方法包括以下步骤:S1、将木质纤维素加入低共熔溶剂中进行加热润胀处理,再通过机械处理得到微纳木质纤维素分散液;S2、向所述微纳木质纤维素分散液中加入催化剂,经加热反应制备得到同时含有自聚物与接枝聚合改性的微纳木质纤维素的微纳木质纤维素复合材料。有益效果:通过在低共熔溶剂体系下“一锅法”高效制备微纳木质纤维素及微纳木质纤维素复合材料,具有制备过程环保绿色、溶剂成本低等显著特点,同时还具有反应条件温和、可操作性强、无化学品污染等优势,所制备的微纳木质纤维素复合材料可广泛应用于工程材料、包装材料、生物医药材料等领域。

    一种高强度高纳米纤维素含量的柔性导电复合材料及其制备方法与应用

    公开(公告)号:CN115197370A

    公开(公告)日:2022-10-18

    申请号:CN202210941156.4

    申请日:2022-08-05

    Abstract: 本发明公开了一种高强度高纳米纤维素含量柔性导电复合材料的制备与应用。采用低共熔溶剂和含双键的环氧类单体对纤维素进行高温润胀,然后将充分润胀的纤维素原料通过机械处理得到改性纳米纤维素分散液;向分散液中加入引发剂进行快速聚合,制备得到高强度高纳米纤维素含量的柔性导电复合材料。本发明在低共熔溶剂体系下“一锅法”高效制备高强度高纳米纤维素含量的柔性导电复合材料,反应过程绿色环保、无需溶剂置换和产物分离,极大的节约了生产成本和能耗。具有安全绿色、成本低廉等显著特点,同时还具有反应条件温和操作灵活等优势。所制备的高强度高纳米纤维素导电复合材料可广泛应用于软体机器人、导电墨水、柔性传感器等领域。

    一种可3D打印高强高韧热固性树脂复合材料及其制备方法与应用

    公开(公告)号:CN115181397A

    公开(公告)日:2022-10-14

    申请号:CN202210489323.6

    申请日:2022-05-06

    Abstract: 本发明公开了一种可3D打印高强高韧热固性树脂复合材料及其制备方法与应用。将接枝改性的纳米木质纤维素稳定分散于热固性树脂单体中,加入催化剂,经前端开环易位聚合反应后得到可3D打印的高强高韧热固性树脂复合材料。本发明中接枝改性的纳米木质纤维素可有效的减缓热固性树脂单体在前端开环易位聚合时的反应速率,同时还可实现复合材料的拉伸应力和应变同时增加。本发明中接枝改性的纳米木质纤维素同时作为前端开环易位聚合的抑制剂以及热固性材料的增韧增强剂,可广泛应用于3D打印热固性树脂材料的制备,所制备的3D打印复合材料可广泛应用于工程防护、汽车船舶外壳、包装箱等领域。

Patent Agency Ranking