-
公开(公告)号:CN109884894B
公开(公告)日:2021-07-13
申请号:CN201910175674.8
申请日:2019-03-08
Applicant: 福州大学
IPC: G05B13/04
Abstract: 本发明提出一种电液助力转向系统神经网络积分滑模控制方法,包括以下步骤:建立电液助力转向系统的数学模型;基于滑模方法和智能控制理论设计得到自适应RBF神经网络积分滑模控制器。本发明采用非线性积分滑模技术作为基本控制方法,其切换性能够使得控制系统对参数不确定性及外部干扰具有很强的鲁棒性,通过结合自适应RBF神经网络的方法实时逼近电液助力转向系统的动态行为,所设计的控制方法不仅不必推导适用于控制器设计所需的精确数学表达式,同时也不再需要泵源压力、工作压力和左、右侧轮胎阻力矩的测量。最终,所设计的神经网络积分滑模控制方法对模型不确定性和外部时变干扰具有很强的鲁棒性,并且能够及时、准确地跟踪电液助力转向系统的给定期望指令。
-
公开(公告)号:CN111734773A
公开(公告)日:2020-10-02
申请号:CN202010609881.2
申请日:2020-06-30
Applicant: 福州大学
IPC: F16F9/53
Abstract: 本发明提出利用永磁机构的宽范围刚度阻尼可变的磁流变液吸振器,包括第二缸筒、第一缸筒和活塞杆;活塞杆的一端连接外部负载;另一端置于第二缸筒内;活塞杆上固定有带第一励磁线圈的第一活塞、带第二励磁线圈的第二活塞;第一活塞位于第一缸筒内,第二活塞位于第二缸筒内;所述第一缸筒、第二缸筒的筒腔内均储有磁流变液;所述第一缸筒滑置于外套筒内,第一缸筒端部与外套筒端部之间设有刚度可调的第一吸振结构;第二活塞滑置于第二缸筒内形成阻尼可变的第二吸振结构;本发明通过双缸分别控制吸振器的刚度和阻尼,可以实现吸振器的结构一体化,并且采用永磁体实现变刚度,可以更大范围地调节刚度变化,增大吸振器的最大出力和整体动力可调系数。
-
公开(公告)号:CN110263444A
公开(公告)日:2019-09-20
申请号:CN201910546505.0
申请日:2019-06-21
Applicant: 福州大学
IPC: G06F17/50
Abstract: 本发明提出一种重型车辆横拉杆的优化设计方法:步骤S1:实时获取双侧轮转向负载数据;步骤S2:计算得到双侧轮转向负载工作区间;步骤S3:调整转向负载,使转向负载趋于实车行驶的极限工况,获取全工况负载工作区间;步骤S4:根据全工况负载工作区间与含横拉杆的转向系统数学模型,反算出横拉杆受力区间;步骤S5:根据含横拉杆的转向系统数学模型,确认泵源压力与转向负载对横拉杆拉压范围的影响区间;步骤S6:确认横拉杆出现拉压交变的临界点;步骤S7:基于横拉杆大范围受拉,小范围受压的实际受力区间,选取横拉杆安全系数;步骤S8:根据横拉杆安全系数和受力区间,对横拉杆进行优化设计。能更加精准的对横拉杆进行优化设计。
-
公开(公告)号:CN115824482B
公开(公告)日:2024-05-14
申请号:CN202211562488.8
申请日:2022-12-07
Applicant: 福州大学
IPC: G01L5/166 , G01M17/013
Abstract: 本发明公开了一种实现车辆行驶工况轮胎力精确测量的六分力测试装置及其工作方法,其中六分力测试装置包括:轮边系统和角位移测量装置。轮边系统包括轮胎总成、信号采集装置、轮胎六分力传感器、连接轴、制动盘、立柱;信号采集装置安装于车轮总成与轮胎六分力传感器之间;角位移测量装置安装于立柱与连接轴之间,其内部主要设置有:激光源、定光栅、转动光栅、光敏元件、光敏传感器。本发明采用一体制连接轴为连接件,提供了集成式信息采集装置以及角位移测量装置,减轻了车轮总成质量,避免簧下质量过大与轮距增加问题;同时,对轮胎旋转角度进行精准测量,结合精确测量的轮胎旋转角度信息与轮胎六分力信息,得到实际轮胎六分力,提高了六分力测量精度。
-
公开(公告)号:CN116679571A
公开(公告)日:2023-09-01
申请号:CN202310853514.0
申请日:2023-07-12
Applicant: 福州大学
IPC: G05B13/04
Abstract: 本发明涉及一种基于双反馈循环神经网络的多轴车辆跟踪控制方法,包括:S1、引入路径跟踪误差模型,建立考虑多轴车辆系统的不确定性以及外部干扰的多轴车辆动力学模型;S2、设计最优标称控制律,其标称控制部分考虑了额外的误差积分反馈动作,以渐近稳定的方式跟踪标称多轴车辆动力学系统的参考路径;S3、设计切换控制律,用于保证设计的积分滑模面的可达性,同时与标称控制律结合形成最优积分滑模总体控制律,以提高整个跟踪控制系统的鲁棒性;S4、将双反馈循环神经网络应用于最优积分滑模控制器中,近似多轴车辆动力学系统的未知部分,并增强在未知模型参数存在的情况下得到的系统的鲁棒性。该方法可以提高多轴车辆跟踪性能。
-
公开(公告)号:CN116625370A
公开(公告)日:2023-08-22
申请号:CN202310522024.2
申请日:2023-05-10
Applicant: 福州大学
Abstract: 本发明涉及一种面向重型全轮转向车辆的多段式平行泊车路径规划方法。根据车辆参数以及传感器检测到的平行泊车位尺寸及道路信息,建立全轮转向车辆的平行泊车场景,输入车辆定位的起始泊车点信息,执行设计的算法,实时检测存在的安全泊车路径。其中,利用参数采样法生成一系列泊车路径并对路径进行离散,明确在泊车过程中需要满足的道路约束及车辆动力学约束,设计路径评价函数,对满足约束的路径进行评价并优选路径,完成多段式多转向模式车辆的平行泊车路径的优化设计,实现重型全轮转向车辆更灵活的泊车路径设计,减少泊车过程所占用的泊车空间,提高了泊车效率。
-
公开(公告)号:CN116279806A
公开(公告)日:2023-06-23
申请号:CN202310062719.7
申请日:2023-01-16
Applicant: 福州大学
Abstract: 本发明提出一种可提升行驶安全性的多轴线控底盘及其协调控制方法,包括:车架;悬架系统;线控制动、独立转向和驱动装置;信号采集和无线遥控装置;匹配上述结构,在低速阶段,线控底盘根据行驶的目标轨迹曲率和障碍物距离控制线控独立轮转向装置,采用多种转向模式切换组合并通过电动伺服缸独立精准控制转角进行安全高效转向行驶,轮毂电机采用平均转矩控制避免频繁调整转矩带来的能耗;在高速阶段,线控轮毂电机控制装置应用高鲁棒性的模糊滑模控制器进行差异化转矩控制,调整线控底盘的转向姿态并提高轨迹跟踪精度;应用无线遥控和线控转向驱动装置相结合进行协调控制,提高线控底盘在全路面工况下的转向安全性和狭窄路况的安全通过能力。
-
公开(公告)号:CN115727089A
公开(公告)日:2023-03-03
申请号:CN202211541117.1
申请日:2022-12-03
Applicant: 福州大学
Abstract: 本发明涉及一种多极环形磁路变组态的磁流变减振器及其控制方法,该减振器主要由内外缸筒、压缩装置、电压反馈装置、多极可控阻尼回流装置组成,内外缸筒包括内缸筒和外缸筒,压缩装置包括活塞和弹簧,活塞沿缸筒轴线上下运动,弹簧分别位于活塞两端,电压反馈装置设有压电陶瓷,其分别位于弹簧另一端,多极可控阻尼回流装置位于主体的一侧,其设有六极环形铁筒、栅格阻尼柱,六线圈绕组分别缠绕在六极环形铁筒上的六铁心上,通电产生的磁场使流入栅格阻尼柱的磁流变液产生剪切阻尼力,多极环形磁路绕组的设计可以降低更多的能耗和解决了单线圈绕组无法快速散热问题,对六组线圈进行变组态控制,即抑制了振动又实现了节能控制。
-
公开(公告)号:CN115544692A
公开(公告)日:2022-12-30
申请号:CN202211297691.7
申请日:2022-10-22
Applicant: 福州大学
IPC: G06F30/17 , G06F30/23 , G06F119/10
Abstract: 本发明提出基于壁板贡献度的液压马达自由层阻尼优化减振降噪方法,包括如下步骤:步骤S1、通过建立声、流、固耦合模型,获取配流盘、轴承座、柱塞、主轴的高频激振源数据以及耦合马达内部受到的压力冲击、流量脉动的激振源数据;步骤S2、以高频碰撞激振源数据与流体冲击激振源数据为输入,获取振动信息传递至马达外壳体并引发壳体表面振动响应特性数据;步骤S3、以壳体表面振动响应特性数据为输入,获取壁板对噪声的贡献度分析;步骤S4、基于贡献度分析得到马达不同部位壁板对噪声的贡献度,确定自由阻尼层的敷设位置;本发明能快速实现液压马达的不同壁板对于噪声辐射的贡献分析,获取阻尼层最优敷设位置,实现自由阻尼层优化下的减振降噪。
-
公开(公告)号:CN112632877A
公开(公告)日:2021-04-09
申请号:CN202110020835.3
申请日:2021-01-07
Applicant: 福州大学
IPC: G06F30/28 , G06F30/23 , G06F113/08 , G06F119/10 , G06F119/14
Abstract: 本发明涉及一种耦合高频碰撞与流体冲击的高速开关阀模拟声场建模方法,包括:S1:通过高速开关阀电磁、液、固物理场耦合建模,获取阀芯与阀座、动衔铁与铁芯的高频碰撞激振源数据与耦合阀体内壁面受到的压力冲击和空化冲击的流体冲击激振源数据;S2:以高频碰撞与流体冲击激振源数据为输入,分析振动传递路径,进行高速开关阀瞬态振动响应建模,获取高速开关阀壳体表面振动响应数据;S3:借助壳体表面振动响应数据,通过瞬态边界元法,完成高速开关阀声场建模,获取高速开关阀声场数据。该方法准确实现高速开关阀电磁、液、固物理场耦合建模,全面获取并耦合了流体与机械激振源,快速且精准预测高速开关阀的声场数据,缩短高速开关阀的研发周期。
-
-
-
-
-
-
-
-
-