Abstract:
PURPOSE: A negative electrode active material for lithium secondary battery and a manufacturing method thereof are provided to simplify manufacturing process, enable mass production, and enhance lifetime of a battery. CONSTITUTION: A negative electrode active material for lithium secondary battery comprises a material(100) which is able to dope/de-dope lithium, a plurality of 0.1-3micron size external pores(101) formed on the material surface, a plurality of 10-50nm internal pores inside of the external pores. The material which is able to dope/de-dope contains Si. The negative electrode active material for lithium secondary battery has a Brunauer-Emmett Teller(BET) non-surface area of 2.0-20.0 m/g and a total pore volume of 0.03-0.06 cc/g.
Abstract:
본발명은리튬이온전지, 커패시터(capacitor) 및그 외에너지저장장치등의전기화학소자분야에활용되는전해질조성물에포함될수 있는중합체또는그 중합체를포함하는전해질조성물에관한것으로, 본발명의전이금속킬레이팅작용기전이금속킬레이팅작용기를포함하는중합체는, 아래의 [화학식 1] 로표시되는반복단위를하나이상포함한다: [화학식 1]k 및 l은 1 이상의자연수, m은 0 또는 1 이상의자연수 A, B 및 C 중하나이상은전이금속킬레이팅작용기를포함하는것이고, 전이금속킬레이팅작용기를포함하지않는나머지는, 각각, 말단에니트릴기를포함하는작용기, 말단에하이드록실(Hydroxyl)기를포함하는작용기, C의선형알킬기및 H로이루어진군에서선택되는어느하나인것.
Abstract:
본 발명은 리튬염; 및 환형 카보네이트 화합물 및 니트릴계 화합물을 포함하는 비수성 유기용매;를 포함하고, 상기 니트릴계 화합물은 상기 비수성 유기용매의 총량에 대하여 10 내지 33 부피%로 포함되는 리튬 이차전지용 전해액 및 이를 이용하는 리튬 이차전지에 관한 것이다.
Abstract:
본 발명은 (i) 용매; (ii) 리튬염; 및 (iii) 전해액 조성물 총 중량을 기준으로 0.1 내지 5 중량%의 풀루란(pullulan)계 고분자 수지를 포함하는 전해액 조성물로서, 상기 풀루란계 고분자 수지가 화학식 1로 표시되는 반복단위를 하나 이상 포함하는 폴리머, 올리고머 또는 이의 혼합물인 것을 특징으로 하는 전해액 조성물에 관한 것으로, 본 발명에 따른 전해액 조성물은 상온 및 고온에서 우수한 수명특성을 나타내고, 고온에서 전해액 분해에 따른 가스 발생을 억제하여 전기화학소자의 안전성을 향상시킬 수 있어, 전기화학소자의 제조에 유용하게 사용될 수 있다.
Abstract:
The present invention relates to a positive electrode which comprises a current collector and a positive electrode active material layer formed on the current collector, wherein the positive electrode active material layer consists of a positive electrode active material; the positive electrode active material includes a material which allows for lithium doping and dedoping and a conductive polymer coating layer formed on a surface of the material which allows for lithium doping and dedoping; and the conductive polymer coating layer includes at least one conductive polymer selected from a polyacetylene-based polymer, a polyaniline-based polymer, a polypyrrole-based polymer, a polythiophen-based polymer, a polyphenylene-based polymer, and derivatives of them. Furthermore, the present invention relates to a manufacturing method of the positive electrode, a positive electrode active material, a manufacturing method of the positive electrode active material, and an electrochemical device including the positive electrode.
Abstract:
PURPOSE: A method for manufacturing nano materials and a method for manufacturing a secondary battery using the same are provided to easily control the characteristic of the nano materials according to the length and the concentration of alkyl groups in alkyl amine. CONSTITUTION: A method for manufacturing nano materials includes the following: A mixed solution containing a metallic salt aqueous solution and alkyl amine. The mixed solution is hydrothermal-treated. The metallic salt of the metallic salt aqueous solution includes chlorides, sulfates, nitrates, and the combination of the same or includes copper salt, nickel salt, lead salt, or the combination of the same. The molar ratio of the metallic salt and the alkyl amine is between 3:1 and 15:1. The hydrothermal treating process is implemented at a temperature between 100 and 300 degrees Celsius at an inert gas atmosphere.
Abstract:
PURPOSE: A method for manufacturing silicon nanowires and a method for manufacturing a lithium secondary battery using the same are provided to prevent the crack of the silicon nanowires due to the volume expansion of the lithium secondary battery in a charging and discharging process by uniformly maintaining the array and the interval of the silicon nanowires on a cathode collector. CONSTITUTION: A method for manufacturing silicon nanowires(123) includes the following: A catalyst layer(124) including separately arranged metal particles is formed on a silicon layer(121). The catalyst layer forming process uses mask particles which are separately arranged on the silicon layer. The mask particles include a core layer containing the metal particles and a polymer layer surrounding the core layer. The silicon layer in contact with the metal particles is selectively etched through a wet etching process. The metal particles are eliminated to obtain the nanowires.