Abstract:
PURPOSE: A zeolite sorption agent wherein solid amine is impregnated is disclosed, along with a manufacturing method thereof, to be excellent in a sorption capacity, an ability to remove carbon dioxide, event at 50°C, a temperature combustible waste gas is ejected to the atmosphere. CONSTITUTION: A zeolite sorption agent wherein solid amine is impregnated comprises the steps of: preparing a solid amine solution, adding molded zeolite in the solid amine solution, impregnating the zeolite added solution at 30-90°C, for 2-8 hours, in a vacuum, and drying the solution in a vacuum oven at 90-110°C, for 10-30 hours.
Abstract:
본원은 이트리움으로 도핑된 바나듐 기재 합금 수소 분리막 및 이를 이용한 수소분리방법을 제공한다. 본원의 수소 분리막은 고온에서의 높은 수소 투과도는 물론 우수한 기계적 안정성을 가져와 연소전 이산화탄소 포집기술에서 분리막을 이용한 이산화탄소 포집 및 수소 분리에 유용하게 사용될 수 있다.
Abstract:
본 발명은 수소투과합금 및 수소분리막 제조방법에 관한 것으로, 더욱 상세하게는 수소투과성을 담당하는 상과 내수소취화성을 담당하는 상의 2상(dual phase)을 갖는 수소투과합금 및 이를 이용한 수소분리막 제조 시 냉각속도의 차이에 따라 2상 영역의 비율을 조절함으로써 수소 고투과상과 수소 취화를 담당하는 상의 비율을 제어하여 수소 투과도 및 내수소취성을 향상시킬 수 있는 2상 영역을 갖는 수소투과합금 및 이를 이용한 수소분리막의 제조방법에 관한 것이다.
Abstract:
PURPOSE: A reaction enhancer-containing dioxide absorber having excellent carbon dioxide absorbing capability and a rapid reaction rate is provided to greatly reduce the consumption of renewable energy in carbon dioxide collecting process. CONSTITUTION: A reaction enhancer-containing dioxide absorber contains a carbon dioxide absorbent which is a mixture of the amine compounds shown by the chemical formulas 1 to 3 and amine type reaction enhancer. One amine type reaction enhance is chosen among piperazine, morpholine, 2-methylpiperazine, and hexamethylenediamine. The amine type compound contains monoethanolamine 10 to 70 wt%, diethanolamine 10 to 40 wt%, and triethanolammine 5 to 75 wt% with reference to the total amine compound weight.
Abstract:
PURPOSE: A perovskite type ion conductivity tube shape oxygen separating film and a manufacturing method are provided to use serviceably to oxygen separation from the air with carbon dioxide as the oxygen permeation degree and the thermal stability are improved a lot in high pressure and temperature compare to the separation film which is not coated. CONSTITUTION: A perovskite type ion conductivity tube shape oxygen separating film has the composition of the Ba1-xSrxCo1-yFeyO3- and is coated with the La1-xSrxTi1-yFeyO3-. In a chemical formula, it is 0
Abstract translation:目的:提供钙钛矿型离子传导性管状氧分离膜和制造方法,可有效地利用二氧化碳作为氧气渗透度从空气中分离氧气,并且在高压和高温下热稳定性提高很多 未涂布的分离膜。 构成:钙钛矿型离子传导性管状氧分离膜具有Ba1-xSrxCo1-yFeyO3的组成,并且涂覆有La1-xSrxTi1-yFeyO3-。 在化学式中,它是0 <= x <= 1,0 <= y <= 1。 钙钛矿型离子导电管形氧分离膜的制造方法包括以下步骤: 以BSCF粉末的相应8-11与粘合剂1的比例混合干燥步骤; 以8〜11倍的蒸馏水稀释聚乙二醇后,以液态混合2-3份稀释物质与1种增塑剂的重量比的步骤; 通过压缩成型混合物产生管形分离膜的步骤; 通过干燥和塑化所生产的管形分离膜产生精细分离膜的步骤; 在具有20-40%的LSTF粉末的胶体悬浮液中浸泡并涂覆管状分离膜的步骤; 以及通过干燥和塑化涂覆的管状分离膜来产生LSTF涂布的BSCF精细分离膜的步骤。
Abstract:
PURPOSE: A vanadium based alloy hydrogen separating membrane doped with boron and a hydrogen separating method using the same are provided to improve a high hydrogen transmittance at high temperature and an excellent mechanical stability. CONSTITUTION: A vanadium based alloy hydrogen separating membrane doped with boron is doped with the boron of below formula 1. V_100-x-yM_xB_y(I). In the above formula, M is a metal or a transition metal, and x is 0 ≤ x ≤ 20% and y is 0
Abstract:
본 발명은 페롭스카이트형 혼합전도성 산소분리막 및 그 제조방법에 관한 것으로, 더욱 상세하게는 종래의 BSCF 조성의 분리막에 LSTF 조성의 분리막을 코팅함으로써 산소 투과 특성 및 이산화탄소에 대한 내성이 향상된 LSTF-6437이 코팅된 BSCF-5582 산소분리막 및 그 제조방법에 관한 것이다. 본 발명에 따른 LSTF-6437이 코팅된 BSCF-5582 산소분리막은 BSCF-5582 분리막의 표면을 LSTF-6437 코팅액으로 코팅함으로써 산소투과 시 이산화탄소(CO 2 )에 의한 불순물 생성 반응을 억제하여 산소 투과량의 저하를 방지할 수 있으며 코팅 표면의 비표면적 증가에 따라 산소투과량을 증가시킬 수 있는 장점이 있다.
Abstract:
The present invention relates to an ionic liquid-polymer gel membrane with improved gas permeability, and a preparation method thereof, and more specifically, to a membrane prepared to allow an ionic liquid to be dispersed in a polymer gel, thereby improving gas permeability. Particularly, the present invention relates to an ionic liquid-polymer gel membrane wherein membrane selectivity and permeability exceed an upper bound by increasing the amount of dispersed ionic liquid, and a preparation method thereof. The preparation method of the membrane for separating a specific gas from a mixture gas according to the present invention comprises the following steps of: mixing a polymer, an ionic liquid and PC as a solvent to prepare a mixture solution; and drying the mixture solution to remove the solvent from the mixture solution. In addition, the polymer is polyvinylidene fluoride-hexafluoropropyl copolymer (PVdF-HFP), and the ionic liquid is 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]).
Abstract:
PURPOSE: A carbon dioxide absorber using meso-porous materials and a carbon dioxide eliminating method using the same are provided to increase an area, to which carbon dioxide is absorbed, based on branches of polyethyleneimine. CONSTITUTION: A carbon dioxide absorber includes meso-porous materials and polyethyleneimine. The average molecular weight of the polyethyleneimine is between 450 and 650. The polyethyleneimine is immersed in the meso-porous materials. The meso-porous materials are MCM-41 or MCM-48. The absorber absorbs carbon dioxide at a temperature between 40 and 80 degrees Celsius. The immersing rate of the polyethyleneimine is M2/(M1+M2)x100 and is in a range between 25 and 35 wt%, between 45 and 55 wt%, or between 65 and 75 wt%. The M1 is the content of the meso-porous materials. The M2 is the content of polyethyleneimine.
Abstract:
PURPOSE: The carbon dioxide absorbing agent of imidasolium-based ionic liquid, a method for fabricating the same, and a method for absorbing carbon dioxide using the same are provided to reduce energy required for regenerating the absorbing agent by substituting imidazolium-based ionic liquid absorbing agent with alkaline salt to obtain the carbon dioxide absorbing agent. CONSTITUTION: Alkaline salt is added in ionic liquid. The ionic liquid is 1-butyl-3-methylimidazolium iodide using imidazolium as cation. The alkaline salt is selected from KHCO_3 or KOH. The alkaline salt added ionic liquid is stirred to obtain a carbon dioxide absorbing agent. A carbon dioxide absorbing process is implemented in a carbon dioxide absorbing performance measuring unit(10) at temperature between 35 and 45 degrees Celsius and the pressure more than or equal to 10bar.