Abstract:
A method for preparing colloidal oil-soluble iron oxide nano-particle with high dispersity and stability is provided to improve dispersity of the particle in organic solvent and to employ the particle in magnetic recording medium, printer ink, paint additive, ferrofluild, etc. by preparing iron hydroxide slurry and capping surface of the slurry in fatty acid and petroleum solvent to form the nano-particle. The method includes the steps of: preparing iron hydroxide by reacting iron precursor compound with basic compound containing alkaline metal, alkaline earth metal or ammonium cations to form microfine iron hydroxide, precipitating and washing the product; preparing amorphous colloidal iron hydroxide nano-particles by blending the washed product with C10 to C30 fatty acid and petroleum solvent; and preparing iron oxide nano-particles after separating the colloidal iron hydroxide nano-particles into water phase and organic phase, removing the water phase and water content from the organic phase.
Abstract:
본 발명은 고 친유성 산화마그네슘 나노입자의 제조 방법에 관한 것으로서, 더욱 상세하게는 마그네슘 화합물과 염기를 반응하여 침전 및 세척한 다음, 저온 소성하여 산화마그네슘을 제조하고, 상기 제조된 산화마그네슘을 특정의 지방산과 석유계 용제를 이용하여 표면을 캡핑(capping)처리하는 일련의 공정으로, 구형이고, 균일한 나노 입자 크기를 가져 단위 부피 당 차지하는 입자의 표면적이 클 뿐만 아니라 표면처리에 의해 유계 용제내에서 분산성이 종래에 비해 월등히 향상되어, 내열 재료, 고온 절연 및 광학 등의 여러 산업 분야 특히, 연료 첨가제 분야에 매우 유용한 고 친유성 산화마그네슘 나노입자의 제조 방법에 관한 것이다. 저온 소성, 표면처리, 친유성, 산화마그네슘 나노입자
Abstract:
본 발명은 열방사성이 우수한 혼합금속산화물계 내화도료 및 이의 코팅방법에 관한 것으로, 좀 더 구체적으로 철산화물 10∼70중량%, 코발트산화물 2∼30중량%, 니켈산화물 2∼30중량%, 무기 결합재 5∼40중량% 및 수분 10∼60중량%를 포함하는 열방사성이 우수한 혼합금속산화물계 내화도료와 상기 혼합금속 산화물계 내화도료를 공업용 가열로의 화로 또는 벽면 ㎡당 0.3∼3kg의 양으로 도포 또는 코팅시켜 피막을 형성시키는 코팅방법에 관한 것이다. 본 발명에 따른 혼합금속산화물계 내화도료는 철산화물에 방사율이 큰 코발트산화물과 니켈산화물을 혼합하여 사용하여 방사율을 극대화시킴으로써 기존의 열방사성 도료보다 방사율이 우수하여 공업용 가열로의 내벽 표면에 도포시 기존의 도료보다 효과적인 에너지 절약 효과를 가져올 수 있다. 또한, 주 기재로 철, 코발트, 니켈 산화물을 사용함으로써 방사율이 우수하고, 고온안정성이 우수하며, 유기용매에 침투되지 않고, 공업용 가열로 내의 여러 종류의 가스성분에 대해 강한 내식성을 가지고 있다. 가열로, 열방사, 철산화물, 니켈산화물, 코발트산화물, 내화도료, 코팅
Abstract:
The present invention relates to a production method of high purity dimer acid methylester in high yield by performing a conjugation reaction of animal and vegetable oil or waste oil derived fatty acid methylester for facilitating the conjugation of the unsaturated fatty acid methylester and improving reactivity, and by removing the non-reaction saturated fatty acid methylester through distilling. [Reference numerals] (AA) Conjugation fatty acid methyl ester;(BB) Fatty acid methyl ester
Abstract:
PURPOSE: A low temperature flow improver composition for a fuel containing biodiesel, and a low temperature flow improver using thereof are provided to improve the permeability of a filter. CONSTITUTION: A low temperature flow improver composition for a fuel containing biodiesel contains a monomer compound including the following: 10~95parts of vegetable oil originated ester monomer by weight obtained by reacting meth acrylic acid or acrylic acid, with vegetable oil originated fatty alcohol; and 5~90parts of monomer by weight selected from maleic anhydride, styrene, and an ester monomer marked with chemical formula 1.
Abstract:
PURPOSE: A preparation method of dearomatization catalysts for diesel oil is provided, which can keep high dearomatization activity by using platinum, palladium or their mixtures, mesoporous molecular sieve, pseudo-boehmite and acid solutions. The catalyst also enhances yield of liquid hydrocarbon by inhibiting cracking reaction by using mesoporous molecular sieve, enhances activity by well distributing activating component by utilizing merits of large pore size and pore volume of specific surface of mesoporous molecule sieve, and can prevent inactivation caused by coke deposition. CONSTITUTION: The preparation method of dearomatization catalysts for diesel oil comprises the steps of supporting 100 parts by weight of mesoporous molecular sieve with a SiO2/Al2O3 molecular ratio of 30 to 300 and a pore size of 20 to 50 Å with 0.1 to 2.0 parts by weight of platinum, palladium or their mixtures; adding 5 to 50 parts by weight of pseudo boehmite and 0.2 to 3.0 parts by weight of acid solutions, followed by molding; and calcining the molded matter at 300 to 600 deg.C for 4 to 6 hours.