Abstract:
At least some aspects of the present disclosure feature a communication device for propagating an electromagnetic wave around a blocking structure. The communication device includes a passive coupling device to capture the electromagnetic wave, and a waveguide electromagnetically coupled to the coupling device. The waveguide is disposed around the blocking structure. The waveguide has a resonance frequency matched with the coupling device. The waveguide is configured to propagate the electromagnetic wave captured by the coupling device.
Abstract:
A waveguide and a communication system including the waveguide are described. The waveguide is configured to propagate an electromagnetic wave having an operating frequency along the waveguide. The waveguide includes a substrate having a first dielectric constant, and an array of spaced apart unit cells at least partially embedded in the substrate and arranged along the waveguide. Each of a plurality of the unit cells in the array of spaced apart unit cells has a first transmission parameter S121 having a lowest resonant frequency Γ1 and includes a dielectric body and one or more electrically conductive layers disposed on and partially covering the dielectric body. The dielectric body has a second dielectric constant greater than the first dielectric constant at the operating frequency and has a second transmission parameter S221 having a lowest resonant frequency Γ2 greater than Γ1.
Abstract:
Electrically conductive articles are provided, including a composite including (a) a resin, and (b) electrically conductive shaped particles distributed in the resin, the particles having a monosized distribution. Each particle has a shape including at least a first surface and a second surface intersecting the first surface at an angle a between about 5 degrees and about 150 degrees. The composite has a thickness and often each of the electrically conductive shaped particles distributed in the resin is oriented within the resin such that the particle does not extend beyond the thickness of the composite. A method for making an electrically conductive article is also provided, including (a) providing electrically conductive shaped particles having a monosized distribution, and (b) distributing the particles into a resin to form a composite.
Abstract:
At least some aspects of the present disclosure feature a waveguide for propagating an electromagnetic wave. The waveguide includes a base material and a plurality of resonators disposed in a pattern, the plurality of resonators having a resonance frequency. Each of the plurality of resonators has a relative permittivity greater than a relative permittivity of the base material. At least two of the plurality of resonators are spaced according to a lattice constant that defines a distance between a center of a first one of the resonators and a center of a neighboring second one of the resonators.
Abstract:
An electronic article comprises an electronic component bonded to a composite composition. The composite composition comprises a crosslinked silicone foam having polydimethylsiloxane segments, and electromagnetically responsive particles retained in the crosslinked silicone foam. Composite compositions comprising carbon nanotubes and electromagnetic wave shielding articles including them are also disclosed.
Abstract:
Electromagnetic interference (EMI) shielding articles and methods of producing and using the same are described. The articles include electrically conductive fillers and silsesquioxane-like (SSQ-like) particles distributed inside a polymeric matrix material. In some cases, adding the SSQ-like particles leads to increased porosity of the articles which improves EMI absorbing performance.
Abstract:
Electromagnetic interference (EMI) shielding composites and methods of producing the same are described. Carbon nanostructure (CNS) fillers including cross-linked carbon nanotubes (CNTs) and a polymeric encapsulation material are provided, where the carbon nanotubes are encapsulated by the polymeric encapsulation material. The CNS fillers are treated to remove at least a portion of the polymeric encapsulation material. After removing the polymeric encapsulation material, the CNS fillers are mixed with a curable matrix material to obtain EMI shielding composites. In some cases, the removal of the polymeric encapsulation material results in diminished dielectric polarization characteristics for the composites.
Abstract:
Compositions comprising ferrosoferric oxide dispersed in a polymer matrix. Such compositions may exhibit properties suitable for achieving both resistive field grading effects and capacitive field grading effects e.g. in electrical stress control devices and surge arrestor devices. Such compositions may optionally include one or more capacitive field grading additives and/or conductive additives.
Abstract:
Voltage sensor (1) for a high- or medium-voltage power-carrying conductor for a power network, such as an inner conductor of a power cable or a cable connector or a bus bar. The voltage sensor has a tubular shape and an axial passageway (40), which can receive the conductor. The voltage sensing device comprises a) a radially-inner electrode (20), operable as a first sensing electrode of a sensing capacitor for sensing the voltage of the power-carrying conductor, b) a radially-outer electrode (30), operable as a second sensing electrode of the sensing capacitor, and c) a solid carrier element (10), at least a first portion of which is arranged between the inner electrode and the outer electrode, the first portion being operable as a dielectric of the sensing capacitor. The sensor can be accommodated in a cable accessory. The carrier element may comprise ceramic material to increase accuracy.
Abstract:
Compositions (120), which may be in the form of flexible films, molded bodies, or printable inks, can incorporate ceramic particles (122) comprising titanium monoxide (TiO) for purposes of electromagnetic interference (EMI) shielding at megahertz through gigahertz frequencies. One or more additional ceramic particles can also be included. The compositions comprise a composite material (120) which includes the ceramic particles (122) dispersed within a matrix material (121), such as a polymer. Methods associated with such compositions are also described.