Abstract:
A polarizing film is made of multilayer polarizing fibers embedded within a matrix. The fibers are formed with layers of at least a first and a second polymer material. Layers of the first polymer material are disposed between layers of the second polymer material. At least one of the first and second polymer materials is birefringent. In some embodiments the thickness of the layers of at least one of the materials varies across the fiber. The fibers are be embedded within a material having a lower refractive index than either the first or second polymer material.
Abstract:
Microneedle devices and methods of manufacturing the microneedle devices. The microneedle devices include microneedles protruding from a substrate (20), with the microneedles (30) piercing a cover (40) placed over the substrate surface (22) from which the microneedles protrude. The cover (40) and the microneedle substrate (20) together define a capillary volume in fluid communication with the base (34) of each microneedle (30). One manner of using microneedle arrays of the present invention is in methods involving the penetration of skin to deliver medicaments or other substances and/or extract blood or tissue. Manufacturing methods may include simultaneous application of pressure and ultrasonic energy when piercing the cover with the microneedles.
Abstract:
A composite polymer fiber comprises a polymer filler material and a plurality of polymer scattering fibers disposed within the filler material. At least one of the filler material and the scattering fibers is formed of a birefringent material. The refractive indices of the filler material and the scattering fibers can be substantially matched for light incident in a first polarization state on the composite polymer fiber and unmatched for light incident in an orthogonal polarization state. The scattering fibers may be arranged to form a photonic crystal within the composite fiber. The composite fibers may be extruded and may be formed into a yarn, a weave or the like. If the filler material is soluble, it may be washed out of the yarn or weave, and the scattering fibers may then be infiltrated with a resin that is subsequently cured.
Abstract:
Disclosed herein is a microstructured tool having a microstructured layer having a polymer and a microstructured surface; a nickel layer disposed adjacent the microstructured layer opposite the microstructured surface; and a base layer disposed adjacent the nickel layer opposite the microstructured layer. The microstructured surface may have at least one feature having a maximum depth of up to about 1000 um. Also disclosed herein is a method of making the microstructured tool using laser ablation. The microstructured tool may be used to make articles suitable for use in optical applications.
Abstract:
Microneedle devices and methods of manufacturing the microneedle devices. The microneedle devices include microneedles protruding from a substrate (20), with the microneedles (30) piercing a cover (40) placed over the substrate surface (22) from which the microneedles protrude. The cover (40) and the microneedle substrate (20) together define a capillary volume in fluid communication with the base (34) of each microneedle (30). One manner of using microneedle arrays of the present invention is in methods involving the penetration of skin to deliver medicaments or other substances and/or extract blood or tissue. Manufacturing methods may include simultaneous application of pressure and ultrasonic energy when piercing the cover with the microneedles.