Abstract:
A dental appliance includes a polymeric shell with a plurality of cavities for receiving one or more teeth, including an interior region with a core layer of a first thermoplastic polymer A with a thermal transition temperature of about 70° C. to about 140° C. and a flexural modulus greater than about 1.3 GPa, and first and second interior layers of a second thermoplastic polymer B with a glass transition temperature of less than about 0° C., a flexural modulus less than about 1 GPa, and an elongation a break of greater than 150%; and first and second exterior layers of a third thermoplastic polymer C with a thermal transition temperature of about 70° C. to about 140° C. and a flexural modulus greater than about 1.3 GPa. The dental appliance demonstrates enhanced optical properties, with enhanced light transmission and low haze.
Abstract:
Polymerizable compositions suitable for use for 3D printed (e.g. orthodontic) articles, especially orthodontic alignment trays, are described. The polymerizable composition comprises a) 30-70 parts by weight of (meth)acrylate monomer(s); and b) urethane (meth)acrylate polymer; wherein the reaction product comprises at least 1 wt. % polymerized units of a multifunctional compound comprising pendent cyclic moieties. The orthodontic article comprises the reaction product of a polymerizable composition as described herein. The urethane (meth)acrylate polymer typically comprises polymerized units of a multifunctional compound comprising pendent cyclic moieties and/or at least one (meth)acrylate monomer comprises polymerized units of a multifunctional compound comprising pendent cyclic moieties. Also described are methods of making an article, non-transitory machine-readable medium comprising data representing a three-dimensional model of an article, and systems.
Abstract:
The present disclosure describes a control scheme for actively detecting the presence of a pedestrian which triggers the lighting of a bollard-style luminaire, methods for crosswalk illumination using the bollard-style luminaires, and methods of communication between bollard-style luminaires. The present disclosure further describes actively monitoring for vehicles and indicating safe passage, through lighting feedback on a pedestrian crosswalk or other walkway. The bollard luminaire includes a design that generally confines light to illuminate the crosswalk and the pedestrian in the crosswalk, such that light that could produce glare for the pedestrian and/or a driver approaching the crosswalk is minimized.
Abstract:
The present disclosure describes light delivery and distribution components of a light duct that can be used as a luminaire, such as a bollard-style luminaire that can be useful for the illumination of pedestrian crosswalks, the light engine useful in the luminaire, and methods for making the light engine and the luminaire. The present disclosure further describes methods for crosswalk illumination using the bollard-style luminaires, and methods of communication between bollard luminaires. The bollard luminaire includes a design that generally confines light to illuminate the crosswalk and the pedestrian in the crosswalk, such that light that could produce glare for the pedestrian and/or a driver approaching the crosswalk is minimized.
Abstract:
Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
Abstract:
Presently described are methods of making an article comprising providing a structured film (1100) comprising a thermoformable planar base (212) layer and a structured surface (116, 216) layer disposed on a major surface (1200) of the planar base (212) layer wherein the structured surface (116, 216) layer comprises a different organic polymeric material than the thermoformable planar base (212) layer, and thermoforming the structured film (1100) into a thermoformed article (1000). Also described are thermoformed and thermoformable articles.
Abstract:
A method of thermoforming is described. The method comprises providing a multilayer polymer film comprising at least one first thermoplastic polymer layer having a glass transition temperature (Tg) greater than 60° C. and at least one second polymer layer; and thermoforming the multilayer polymer film into a three-dimensional shape. The second polymer layer can be characterized by one or more properties selected from i) a Tg ranging from 20 to 70° C.; ii) a molecular weight between crosslinks of no greater than 20,000 g/mole; and iii) sufficient crosslinking such that the second polymer layer lacks a thermal melt or softening transition at a temperature up to the decomposition temperature of the second polymer layer. Also described are multilayer films and articles, such as orthodontic aligner and retainer trays.
Abstract:
A dental appliance includes a polymeric shell with a plurality of cavities for receiving one or more teeth, including an interior region with a core layer of a first thermoplastic polymer A with a thermal transition temperature of about 70° C. to about 140° C. in and a flexural modulus greater than about 1.3 GPa, and first and second interior layers of a second thermoplastic polymer B with a glass transition temperature of less than about 0° C. and a flexural modulus less than about 1 GPa; and first and second exterior layers of a third thermoplastic polymer C with a thermal transition temperature of about 70° C. to about 140° C. and a flexural modulus greater than about 1.3 GPa. Interfacial adhesion between any of the adjacent layers in the polymeric shell is greater than about 150 grams per inch.
Abstract:
A dental appliance includes a polymeric shell with an arrangement of one or more cavities configured to receive one or more teeth, and the polymeric shell includes an antimicrobial lipid, such as monolaurin, and optionally an enhancer.
Abstract:
The present disclosure provides methods of making a hydrated orthodontic article is provided. One method includes a) providing a photopolymerizable composition; b) selectively curing the photopolymerizable composition using actinic radiation to form an article in the shape of an orthodontic article having a plurality of layers of at least one photopolymerized polymer; and c) exposing the article to water by submersion in water, thereby hydrating the article. A sheet of the at least one photopolymerized polymer has a bending modulus when hydrated of 100 MPa or greater and 2200 MPa or less. Another method includes exposing the orthodontic article to water vapor and hermetically sealing the hydrated orthodontic article in a container. Hydrated orthodontic articles are also provided, including an orthodontic article that is prepared according to one of the methods. The present disclosure further provides kits, including an orthodontic article and instructions for exposing the orthodontic article to water to hydrate the orthodontic article, as well as including a hydrated orthodontic article hermetically sealed in a container.