Abstract:
A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
Abstract:
A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
Abstract:
The present invention is adhesive article including a tie layer and a silicone adhesive. The tie layer includes a segmented copolymer having a first segment that is one of (a) a polyether comprising one of PTMO or PEO/PPO or (b) a polysiloxane. The segmented copolymer has a water absorbency of less than about 13%.
Abstract:
A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
Abstract:
A melt blowing process comprising: (a) providing a thermoplastic polymer material that includes at least one or a plurality of polyester polymers and at least one or a combination of different meltable metal phosphinates; and (b) melt blowing the thermoplastic polymer material into at least one fiber or a plurality of fibers, with each fiber having a diameter or thickness that is less than about 10 microns. The metal phosphinate is in an amount that (a) reduces the viscosity of the polyester polymer and (b) functions as a crystallizing agent, which at least promotes crystallization of the polyester polymer, when the thermoplastic polymer material is melt blown into the at least one fiber. Non-woven and woven fibrous structures can be made using fibers made from this process.