Abstract:
The control means of each converter unit produces an output voltage based on reference signals (u* d , u* q ) that are generated from the active and reactive components (P, Q) of each converters output power. A first reference signal for a reactive component of the output voltage (u* q ) is set to zero, thus regulating the reactive component of the output voltage to zero. Therefore, only the active component is contributing to the actual output voltage. The reference signal for the active component of the output voltage (u* d ) is produced based on the active power component (P) with an active power vs. active voltage droop. To synchronize the frequencies of all converter units a reactive power vs. frequency droop is introduced for each converter unit, regulating the frequency based on changes in the reactive power component (Q) of each converter unit. Since the control means of each converter unit produces its reference signals based on the converter units own reactive and active power output, no communication is necessary between the various converter units operating in parallel. Converter units can therefore be placed anywhere without communication.
Abstract:
The control means of each converter unit produces an output voltage based on reference signals (u* d , u* q ) that are generated from the active and reactive components (P, Q) of each converters output power. A first reference signal for a reactive component of the output voltage (u* q ) is set to zero, thus regulating the reactive component of the output voltage to zero. Therefore, only the active component is contributing to the actual output voltage. The reference signal for the active component of the output voltage (u* d ) is produced based on the active power component (P) with an active power vs. active voltage droop. To synchronize the frequencies of all converter units a reactive power vs. frequency droop is introduced for each converter unit, regulating the frequency based on changes in the reactive power component (Q) of each converter unit. Since the control means of each converter unit produces its reference signals based on the converter units own reactive and active power output, no communication is necessary between the various converter units operating in parallel. Converter units can therefore be placed anywhere without communication.
Abstract:
The inventive method comprises the steps of introducing a reactive current reference square wave, detecting load voltage changes at every change in the reactive current reverence wave, and determining whether the detected load voltage changes exceed a predefined islanding detection threshold value, indicating a loss of mains and an islanding operation of the power generator. With the inventive loss of mains detection, islanding can be detected within a shortest period of time, even if the local islands active and reactive load matches exactly the distributed generators active and reactive power generation. So even without a sudden voltage change, unintentional islanding can immediately be detected and control electronics can safely turn of the distributed power generator.
Abstract:
Method and apparatus with connected LCL filter (3), in which the driveable power semiconductor switches are driven by means of hysteresis active power value (dP), hysteresis reactive power value (dQ) and a selected flux sector (On). The hysteresis active power value (dP) is formed from a differential active power value (Pdiff) by means of a first hysteresis controller (16), and the differential active power value (Pdiff) is formed from the subtraction of an estimated active power value (P) and a damping active power value (Pd) from a reference active power value (Pref), wherein the damping active power value (Pd) is formed from a multiplication, divided by an adjustable damping factor (kd), of a low-pass-filtered d component of the Park-Clarke transformation of filter capacitance voltages (UTCf, d) by a filtered, with respect to the fundamental of the filter output currents (ifgl, ifg2, ifg3), d component of the Park-Clarke transformation of filter capacitance voltages (UGCf, d). The hysteresis reactive power value (dQ) is formed from a differential reactive power value (Qdiff) by means of a second hysteresis controller (17) and the differential reactive power value (Qdiff) is formed from the subtraction of an estimated reactive power value (Q) and a damping reactive power value (Qd) from a reference reactive power value (Qref), wherein the damping reactive power value (Qd) is formed from a negative multiplication, divided by the adjustable damping factor (kd), of a low-pass-filtered d component of the Park-Clarke transformation of filter capacitance voltages (UTCf, d) by a q component, which is filtered with respect to the fundamental of the filter output currents (ifgl, ifg2, ifg3), of the Park-Clarke transformation of filter capacitance voltages (UGCf, q).
Abstract:
The inventive method comprises the steps of introducing a reactive current reference square wave, detecting load voltage changes at every change in the reactive current reverence wave, and determining whether the detected load voltage changes exceed a predefined islanding detection threshold value, indicating a loss of mains and an islanding operation of the power generator. With the inventive loss of mains detection, islanding can be detected within a shortest period of time, even if the local islands active and reactive load matches exactly the distributed generators active and reactive power generation. So even without a sudden voltage change, unintentional islanding can immediately be detected and control electronics can safely turn of the distributed power generator.
Abstract:
Disclosed is a method for operating a converter circuit comprising a converter unit (1) with a plurality of triggerable power semiconductor switches and an LCL filter (3) that is connected to each phase terminal (2) of the converter unit (1). According to the inventive method, the triggerable semiconductor switches are triggered using a triggering signal (s) which is formed from reference voltages (u*1, u*2, u*3). Said reference voltages (u*1, u*2, u*3) are formed by subtracting damping voltages (ud1, Ud2, ud3) from phase terminal reference voltages (u*i1, u*i2, u*i3), the damping voltages (ud1, ud2, ud3) being formed from filter capacity currents (iCf1, iCf2, iCf3) of the LCL filters (3), which are weighted with an adjustable damping factor (Kf). Also disclosed is a device for carrying out said method.