Abstract:
A data-capable strapband is described, including techniques for monitoring co-participation in an activity using a data-capable strapband. Data associated with each co-participant's participation in the physical activity may be gathered, processed, analyzed, monitored and compared by each co-participant using data-capable strapbands. Additional devices, such as mobile communications devices, mobile computing devices, computers, laptop computers, personal digital assistants (PDAs), and the like, along with any available accompanying software applications, may be used in conjunction with the data-capable strapbands to further analyze the data that is gathered and presented via, for example, a server configured to provide a social networking service.
Abstract:
Protective overmolding using protective external coatings include applying a material over a structure of a device, the device being configured to perform an operation using data from one or more sensory inputs, and forming a coating over the material, the coating being configured to provide a protective property. Protective materials such as covering may not be used if elements are manufactured to resist the formation, deposit, layering, or covering of other protective materials at various temperatures, pressures, or other atmospheric conditions.
Abstract:
Techniques for component protective overmolding using protective external coatings include a device having a framework configured to be worn, a button assembly coupled to the framework, the button assembly configured to send a signal to a circuit, the button assembly including a button configured to be depressed to displace a button shaft, a button inner housing coupled to the button and the button shaft, and a button outer housing coupled to the button inner housing, a first ring configured to form a first seal disposed substantially between the button inner housing and the button shaft, a second ring configured to form a second seal disposed substantially between the button inner housing and the button outer housing, and an outer molding formed over a portion of the button assembly.
Abstract:
Techniques for component protective overmolding using protective external coatings include a device having a framework configured to be worn, elements coupled to the framework, the elements including a sensor, a molding formed over a portion of the framework and at least one of the elements, the molding configured to protect the device, a plug coupled to an end of the framework configured to transfer one or more electrical signals, and a cap configured to cover the plug.
Abstract:
Techniques for component protective overmolding using protective external coatings include a device having a framework, an element coupled to the framework, a protective material selectively applied substantially over the element, a spacer on or adjacent to the element, a tubing covering the spacer and the element, the tubing and the spacer configured to relieve strain on the element when the framework is flexed, and one or more moldings formed substantially over a subset or all of the framework, the protective material and the element, at least one of the one or more moldings having a protective property.
Abstract:
Techniques for component protective overmolding include selectively applying a protective material substantially over one or more elements coupled to a framework, forming an inner molding substantially over the framework, the one or more electrical elements coupled to the framework, and the protective material. In some examples, the inner molding is formed after the protective material has been selectively applied, forming an outer molding substantially over the inner molding and the outer molding is configured to protect the framework and to provide a surface configured to receive a pattern. Further, the outer molding may be configured to be removable if a defect is found during an inspection performed after the outer molding is formed.
Abstract:
Techniques for component protective overmolding include selectively applying a protective material substantially over one or more elements coupled to a framework, forming an inner molding substantially over the framework, the one or more electrical elements coupled to the framework, and the protective material. In some examples, the inner molding is formed after the protective material has been selectively applied, forming an outer molding substantially over the inner molding and the outer molding is configured to protect the framework and to provide a surface configured to receive a pattern. Further, the outer molding may be configured to be removable if a defect is found during an inspection performed after the outer molding is formed.
Abstract:
Techniques for component protective overmolding include selectively applying a protective material substantially over one or more elements coupled to a framework, forming an inner molding substantially over the framework, the one or more electrical elements coupled to the framework, and the protective material. In some examples, the inner molding is formed after the protective material has been selectively applied, forming an outer molding substantially over the inner molding and the outer molding is configured to protect the framework and to provide a surface configured to receive a pattern. Further, the outer molding may be configured to be removable if a defect is found during an inspection performed after the outer molding is formed.
Abstract:
Techniques for component protective overmolding include selectively applying a protective material substantially over one or more elements coupled to a framework, forming an inner molding substantially over the framework, the one or more electrical elements coupled to the framework, and the protective material. In some examples, the inner molding is formed after the protective material has been selectively applied, forming an outer molding substantially over the inner molding and the outer molding is configured to protect the framework and to provide a surface configured to receive a pattern. Further, the outer molding may be configured to be removable if a defect is found during an inspection performed after the outer molding is formed.