Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband. Embodiments relate to a wearable band including sensors, a controller coupled to the sensors, an energy storage device, a power port configured to receive power and control signals, and a power manager. The power manager includes at least a transitory power manager configured to control an application of power to one or more components of the wearable band in one or more power modes. The band can be configured as a wearable communications device and sensor platform.
Abstract:
ABSTRACT A wireless data capable strapband to detect inflammation, resting heart rate (TRHR), and fatigue may include sensors for generating motion signals in response to body motion (e.g., accelerometry), for generating force signals in response to force exerted by a body portion, for generating biometric signals indicative of biometric activity (e.g., heart rate, respiration, arousal), and for generating location signals based on user location. The sensor signals may be processed to monitor parameters that may impact a state of sleep of the user (e.g., time of sleep, quality of sleep, hydration, inflammation, contraction, fatigue, TRHR, accelerometry, arousal of the SNS, etc.). Data from the processed signals may be presented (e.g., visually, sound, email, text message, tactile, webpage, etc.) to the user in a format (e.g., reports notifications, coaching, avoidance) intended to instruct/encourage the user to improve their state of sleep.
Abstract:
Sleep management techniques and devices are configured for use with a data-capable personal worn or carried device. In one embodiment, a method includes receiving data representing a sleep profile defining parameters upon which a target score is established, and acquiring data representing acquired parameters associated with sleep activity. The method also includes determining a first score for a first acquired parameter, determining a second score for a second acquired parameter, and calculating at a processor a sleep score based on data in a memory including the first score and the second score. Further, the method includes causing presentation of a representation of the sleep score to indicate either an attainment of the target score or a deviation therefrom.
Abstract:
Techniques for a wearable device and platform for sensory input are described, including a sensor coupled to a framework having a housing having one or more moldings, the sensor being configured to sense at least one sensory input, a processor configured to transform the at least one sensory input to data during an activity in which the wearable device is worn, and a communications facility coupled to the wearable device and configured to transfer the data between the wearable device and another device during the activity, the data being configured to be presented on a user interface.
Abstract:
Techniques for data-capable band management in an integrated application and network communication data environment are described, including detecting a signal configured to initiate a pairing function being transmitted from a wearable computing device to an application, pairing the wearable computing device to the application, establishing a data communication link between the wearable computing device and the application, and configuring the application to transfer data between the wearable computing device and the application.
Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband. Embodiments relate to a wearable band including sensors, a controller coupled to the sensors, an energy storage device, a power port configured to receive power and control signals, and a power manager. The power manager includes at least a transitory power manager configured to control an application of power to one or more components of the wearable band in one or more power modes. The band can be configured as a wearable communications device and sensor platform.
Abstract:
General health and wellness management techniques and devices are configured for use with a data-capable personal worn or carried device. In one embodiment, a method receiving data representing a profile upon which a target score is established based on one or more health-related activities, and acquiring data representing one or more subsets of acquired parameters based on, for example, one or more sensors disposed in a wearable computing device. The method can include determining data representing values for the one or more subsets of the acquired parameters based on reference values for the parameters set forth in the profile and calculating at a first processor a score based on data representing the values, The score represents an attained portion of the one or more health-related activities, In some cases, the method includes causing presentation of a representation of the score relative to the target score.
Abstract:
A wellness system including a personal wearable data-capable band is described. In some examples; a wellness system may include an aggregation engine configured to aggregate user activity data from sources, a feedback engine configured to process the user activity data, the feedback engine operable to communicate a feedback notification to a source device including at least one of the sources, and a user interface configured to display a graphical representation associated with an aggregate value determined from the user activity data and the feedback notification. In other examples, a method using a wellness system may include receiving user activity data from sources, processing the user activity data using an aggregation engine to determine an aggregate value, generating a graphical representation using the aggregate value, and displaying the graphical representation using a user interface.
Abstract:
Spatial and temporal vector analysis in wearable devices using sensor data are described, including evaluating a motion to determine motion signals, the motion being evaluated using data provided by one or more sensors in data communication with a wearable device, isolating motion signals into one or more motion sub-signals, determining a spatial vector and a temporal vector associated with each of the one or more motion sub-signals, and transforming the spatial vector and the temporal vector into a data structure to be used by an application configured to analyze the data structure and to generate content associated with the motion.
Abstract:
Embodiments of the invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices, and more specifically to structures and techniques for managing power generation, power consumption, and other power-related functions in a data-capable strapband. Embodiments relate to a wearable band including sensors, a controller coupled to the sensors, an energy storage device, a power port configured to receive power and control signals, and a power manager. The power manager includes at least a transitory power manager configured to control an application of power to one or more components of the wearable band in one or more power modes. The band can be configured as a wearable communications device and sensor platform.