Abstract:
Provided is a cell culture sheet for a large-capacity incubator. A cell culture sheet according to one embodiment of the present invention is a cell culture sheet provided in a large-capacity incubator having a plurality of sheets disposed to be spaced apart at predetermined intervals therein, wherein the cell culture sheet has an area of 100 cm2 or more and a bending depth of 0.5 cm or less. As such, even when the culture sheets are closely placed in a limited volume of space, there is little sagging or shape deformation in a specific direction to prevent the occurrence of contact with adjacent culture sheets, thereby preventing a decrease in cell culture volume due to a dead space. Furthermore, since the flow of a cell culture fluid due to the occurrence of contact can be minimized or prevented, a large capacity of cells can be stably and smoothly cultivated such that the cell culture sheet is very suitable for a large-capacity incubator and can be widely applied to the cell culture industry.
Abstract:
Provided is a cartridge filter using nanofiber composite fiber yarn, the cartridge filter including: a core having a plurality of holes through which a liquid passes; and a filter medium wound around the core to collect an object to be filtered contained in the liquid, wherein the filter medium comprises composite fiber yarn in which a nanofiber web which is produced by accumulating nanofibers produced by an electrospinning method is laminated to a porous nonwoven fabric, to thus provide excellent durability and improved filtration performance.
Abstract:
Provided is yarn for a cell culture scaffold. The yarn for a cell culture scaffold according to an exemplary embodiment of the present invention includes slitting yarn produced by cutting a compressed nanofiber web to a predetermined width. Accordingly, by creating microenvironments suitable for migration, proliferation and differentiation of cells, cell viability may be enhanced and cells may be three-dimensionally proliferated. In addition, a scaffold according to the present invention has a mechanical strength sufficient for prevention of disruption of the scaffold which occurs during cell culture, such that cells may be stably proliferated. Further, the scaffold according to the present invention uses slitting yarn formed of the compressed nanofiber web, thereby having pores with various sizes, and therefore cell proliferation and cell viability may be enhanced by creation of an extracellular matrix-like environment.
Abstract:
Provided is a nanofiber composite membrane for guided bone regeneration, which includes: spinning a spinning solution by an electrospinning method to produce nanofibers; accumulating the nanofibers, to prepare a certain thickness of a nanofiber web; and drying and thermally calendering the nanofiber web to sterilize the nanofiber web, wherein the spinning solution contains a biocompatible plasticizer to maintain physical properties, flexibility and elasticity of the membrane, by suppressing an increase in brittleness in a sterilization treatment.
Abstract:
Provided is a nanofiber based composite false twist yarn that is obtained by producing a nanofiber tape yarn by precisely slitting a nanofiber membrane produced by electrospinning and then twisting a nanofiber-only twist yarn that is obtained by twisting the nanofiber tape yarn or composite-twisting a nanofiber-only twist yarn and a natural fiber or synthetic fiber. The nanofiber based composite false twist yarn includes: a nanofiber tape yarn including at least one bonding portion or a false twist yarn which is obtained by false twisting the nanofiber tape yarn; and a natural fiber yarn or a synthetic fiber yarn that is composite-false-twisted with the nanofiber tape yarn or the false twist yarn, wherein the nanofiber tape yarn is made of a nanofiber web that is obtained by integrating polymer nanofibers made of a fiber-forming polymer material and having an average diameter of less than 1 μm thereby having fine pores.
Abstract:
A thermally adhesive fiber web implemented by including the steps of: (1) preparing respectively a first spinning solution in which a support component and a second spinning solution in which a thermally adhesive component; (2) performing electrospinning such that the first spinning solution is discharged to a portion of the end surface of a discharge port and the second spinning solution is discharged to the remaining portion, thereby accumulating side-by-side type thermally adhesive composite fibers having a diameter of less than 1 μm; and (3) applying heat to the accumulated side-by-side type thermally adhesive composite fibers. The thermally adhesive fiber web enables easy interfacial bonding to a heterogeneous material with a different material and structural specification and prevents pores formed in an initial stage from being closed during thermal bonding.
Abstract:
Provided is a dental cord using a nanofiber multiple yarn having a large specific surface area and a large number of three-dimensional pores, thereby effectively impregnating a drug such as a hemostatic agent, and a method of manufacturing the dental cord. The dental cord includes: a nanofiber multiple yarn which is obtained by plying and twisting at least two nanofiber tape yarns and which is impregnated with a drug, wherein the at least two nanofiber tape yarns are integrated by nanofibers made of fiber moldability polymer materials and having an average diameter of less than 1 μm, to thus be formed of a nanofiber web having three-dimensional micropores.
Abstract:
Provided is a composite membrane for western blot, in which the composite membrane is prepared by combining nanofiber webs with nonwoven fabrics, and a basis weight of the nanofibers is in a range of 1 gsm to 50 gsm on the nonwoven fabrics, and an average pore size is in a range of 0.1 μm to 1.0 μm. The composite membrane for western blot including nanofibers has advantages such as saving of a production cost, and an excellent response characteristic due to a capillary phenomenon of a double structure, to thereby easily detect even a small amount of a particular substance present in a protein.