Abstract:
A fingerprint sensing system. The fingerprint sensing system includes: at least one sensor; at least one display device; at least one application processor; and at least one secure enclave processor. The application processor(s) receives fingerprint data from the sensor(s) and provides the fingerprint data to the secure enclave processor(s). The secure enclave processor(s) decodes the fingerprint data and provides a signal indicative of at least one matched node. The application processor(s), responsive to receipt of the signal indicative of the matched node(s), presents at least a portion of a synthetic fingerprint image via at least one display device corresponding to the matched node(s).
Abstract:
Some embodiments provide a vehicle that includes a protection system configured to mitigate hazards to vehicle occupants posed by dynamic elements located within proximity of the vehicle. The vehicle can, in response to determining that a dynamic element is moving along a trajectory that intersects a sweep volume of a vehicle portal, can selectively restrict operation of the portal so that an occupant is restricted from opening the portal into a volume through which the dynamic element may pass. The vehicle can restrict portal operation in response to detecting external dynamic elements that are not within an occupant's field of vision. The vehicle can communicate a limited selection of vehicle sensor data, including representations of a detected dynamic element, to a user device supporting an authorized user in response to detecting that the dynamic element is located within a certain proximity of the vehicle.
Abstract:
A fingerprint sensing system. The fingerprint sensing system includes: at least one sensor; at least one display device; at least one application processor; and at least one secure enclave processor. The application processor(s) receives fingerprint data from the sensor(s) and provides the fingerprint data to the secure enclave processor(s). The secure enclave processor(s) decodes the fingerprint data and provides a signal indicative of at least one matched node. The application processor(s), responsive to receipt of the signal indicative of the matched node(s), presents at least a portion of a synthetic fingerprint image via at least one display device corresponding to the matched node(s).
Abstract:
An autonomous navigation system may autonomously navigate a vehicle through an environment in which one or more non-solid objects, including gaseous and/or liquid objects, are located. Sensors, including sensors which can detect chemical substances in a region of the environment, may detect non-solid objects independently of an opacity of the objects. Non-solid objects may be determined to present an obstacle or interference based on determined chemical composition, size, position, velocity, concentration, etc. of the objects. The vehicle may be autonomously navigated to avoid non-solid objects based on positions, trajectories, etc. of the non-solid objects. The vehicle may be navigated according to avoidance driving parameters to avoid non-solid objects, and a navigation system may characterize a non-solid object as a solid object having dimensions and position which encompasses the non-solid object, so that the vehicle is navigated in avoidance of non-solid objects as if the non-solid objects were solid.
Abstract:
Some embodiments provide an autonomous navigation system which autonomously parks a vehicle in a selected available parking space. The vehicle can be parked in a particular parking position in the parking space based on one or more factors. The particular parking position can be selected from a set of potential parking positions based on an aggregate intersection risk value associated with the particular parking position being less than at least one other potential parking position. The aggregate intersection risk value can be determined based on one or more of a proximity of one or more adjacent vehicles to the parking space, a door sweep volume of the one or more adjacent vehicles, body morphology of one or more present occupants of the vehicle, and predicted occupancy of the vehicle.
Abstract:
A fingerprint sensing system. The fingerprint sensing system includes: at least one sensor; at least one display device; at least one application processor; and at least one secure enclave processor. The application processor(s) receives fingerprint data from the sensor(s) and provides the fingerprint data to the secure enclave processor(s). The secure enclave processor(s) decodes the fingerprint data and provides a signal indicative of at least one matched node. The application processor(s), responsive to receipt of the signal indicative of the matched node(s), presents at least a portion of a synthetic fingerprint image via at least one display device corresponding to the matched node(s).
Abstract:
A fingerprint sensing system. The fingerprint sensing system includes: at least one sensor; at least one display device; at least one application processor; and at least one secure enclave processor. The application processor(s) receives fingerprint data from the sensor(s) and provides the fingerprint data to the secure enclave processor(s). The secure enclave processor(s) decodes the fingerprint data and provides a signal indicative of at least one matched node. The application processor(s), responsive to receipt of the signal indicative of the matched node(s), presents at least a portion of a synthetic fingerprint image via at least one display device corresponding to the matched node(s).
Abstract:
Some embodiments provide an autonomous navigation system which can navigate a vehicle through an environment according to a selected comfort profile, where the comfort profile associates a particular set of occupant profiles and a particular set of driving control parameters, so that the vehicle is navigated based on the particular set of driving control parameters. The comfort profile is selected based on a determined correlation between the occupants detected in the vehicle interior and the occupants specified by the set of occupant profiles included in the comfort profile. The driving control parameters included in a comfort profile can be adjusted based on monitoring occupants of the vehicle for feedback when the vehicle is being autonomously navigated according to the comfort profile.
Abstract:
An electronic device provides a tracking report to a computing device that is located remotely from the electronic device. The tracking report may include location information that identifies the geographical location of the electronic device, and device user information that identifies the user of the electronic device. The electronic device acquires location information for the tracking report through a location awareness capability such as a global positioning system. The electronic device acquires user identification information for the tracking report through a biometric scanning component, such as a finger print sensor or other device that senses biometric properties when a user is touching or in close proximity to the device.
Abstract:
A sequence of biometric data images is received, such as, for example, a sequence of fingerprint images, and a set of biometric data images is selected from the sequence of images. The set of images can include one or more segments of at least one image in the sequence of images. One or more portions of at least one image of biometric data in the set of images can be selected to be included in the unified image of biometric data. The unified image of biometric data can be constructed using the one or more portions of the at least one image of biometric data. If the unified image of biometric data is not complete, a user can be prompted for one or more additional images of biometric data.