Abstract:
In one or more embodiments, a first device such as a mobile phone can establish a wireless connection with second device, and the second device can act as a bridge between the first device and a peripheral device, such as a printer, so that the first device need not establish a secure pairing or other type of direct connection with the peripheral device. The second device provides a profile of the peripheral to the first device. The first device can then use the profile to access the peripheral device via the second device, with the second device passing data between the first device and the peripheral identified by the profile. This bridging feature simplifies the process of using the peripheral devices, since no secure pairing or other configuration procedure is needed to enable the first device to access the peripheral.
Abstract:
A telephone number corresponding to an incoming telephone call may be utilized to obtain information associated with the incoming call. If it is determined that the telephone number does not match records stored on the device on which the call is received, a request may be sent from the receiving device to an external device to obtain information associated with the incoming call. The request may be directed to a remote contacts application, another device listed in a data store of the receiving device, or to the calling device itself. When a response is received, the information may be displayed or otherwise utilized by the receiving device.
Abstract:
A method for management of multiple radio links for a wireless peer-to-peer (P2P) session is disclosed. The method can include a wireless communication device providing interface address information for a first radio interface and a second radio interface implemented on the wireless communication device to a peer device when establishing a wireless P2P session with the peer device; establishing a threshold for transitioning between the first radio interface and the second radio interface during the wireless P2P session; determining during the wireless P2P session that the threshold has been met; and in response to the threshold being met, signaling to the peer device to transition to the second radio interface, and using the second radio interface to continue the wireless P2P session.
Abstract:
A method for selecting an out of service (OOS) scan mode for a wireless communication device is provided. The method can include the wireless communication device detecting occurrence of an OOS condition; setting a displacement threshold in response to the OOS condition; determining a displacement magnitude indicative of a distance traveled by the wireless communication device during the OOS condition; determining whether the displacement magnitude exceeds the displacement threshold; using a first scan mode to scan for network coverage in an instance in which it is determined that the displacement magnitude exceeds the displacement threshold; and using a second scan mode to scan for network coverage in an instance in which it is determined that the displacement magnitude does not exceed the displacement threshold. The first scan mode can have a greater scan frequency than the second scan mode.
Abstract:
A speech output to be provided to a user of a device is received. Thereafter, it is determined if the device is currently receiving speech input from a user. Upon determining that the device is not currently receiving speech input from the user, the speech output to the user is provided. On the other hand, upon determining that the device is receiving speech input from the user it is determined if provision of the speech output is urgent. When the speech output is urgent, the speech output is provided to the user. When the speech output is not urgent, provision of the speech output to the user is stayed.
Abstract:
A mobile computing device can be used to locate a vehicle parking location. In particular, the mobile device can automatically identify when a vehicle in which the mobile device is located has entered into a parked state. The mobile device can determine that the vehicle is in a parked state by analyzing one or more parameters that indicate a parked state or a transit state. The location of the mobile device at a time corresponding to when the vehicle is identified as being parked can be associated with an identifier for the current parking location.
Abstract:
Customized images can be used to improve navigation of a user to a particular destination. For example, a mobile device can receive a first destination location of the first user. Additionally, the mobile device can receive one or more media files of the first destination location, wherein at least one of the media files is created with a recording device. Furthermore, the mobile device can further receive an indicator associating the one or more media files with the first destination location. Subsequently, the mobile device can receive a current location of the mobile device of the first user. Finally, the mobile device can display the one or more media files when the current location is within a specified distance of the first destination location.
Abstract:
A location-aware device operated by a first user allows the first user to request a custom notification from a second user upon the occurrence of a custom notification event specified by the first user. The custom notifications can be sent automatically from the second user's device in a text message session, e-mail thread, as an automated telephone message or by using any other available communication mode. In some implementations, the first user can request receipt of a custom notification upon occurrence of a custom notification event that is related to a POI specified by the first user.
Abstract:
A suppression override engine on a user device may be configured to detect communication alert suppressions. An incoming communication from a third party may be detected. Upon detecting the communication, the suppression override engine can override the communication alert suppression if it determines that the incoming communication is responsive to a prior communication from the user device. By overriding the alert suppression the user is then alerted to the incoming communication.
Abstract:
An instruction execution engine on a user device may be configured to receive an executable instruction assigned to one or more contacts or groups of contacts. A communication from the one or more contacts or groups may be detected. Upon detecting the communication, the engine may execute the executable instruction. This executing step may trigger a user reminder or data transfer to one or more third parties.