Abstract:
Disclosed herein are methods for operating a computing device including determining an amount of pressure exerted on a touch-sensitive surface of the computing device. According to the various embodiments, a touch input is received by the touch-sensitive surface. The amount of pressure exerted by the touch input on the touch-sensitive surface is then determined. The computing device operates in a first manner when a first amount of pressure is received and operates in a second manner when a second amount of pressure is received.
Abstract:
A vehicle may have lights such as headlights. The lights may be moved using a positioner. Control circuitry in the vehicle may use sensor circuitry to monitor the environment surrounding the vehicle. The sensor circuitry may include one or more sensors such as a lidar sensor, radar sensor, image sensor, and/or other sensors to measure the shape of a surface in front of the vehicle and the location of the surface relative to the vehicle. These sensors and/or other sensors in the sensor circuitry also measure headlight illumination on the surface. Based on the known shape of the surface in front of the vehicle and the distance of the surface from the vehicle, the control circuitry can predict where a headlight should be aimed on the surface. By comparing predictions of headlight illumination on the surface to measurements of headlight illumination on the surface, the vehicle can determine how to move the headlight with the positioner to align the headlight.
Abstract:
A system such as a vehicle system may include a window. The window may have glass layers and an interposed polymer layer. Signal paths that contact the polymer layer may be formed within the window. The signal paths may be electrical signal paths formed from wires or patterned conductive traces. The conductive traces may be portions of an infrared-light-blocking layer formed from a conductive film or may be patterned from other conductive thin-film layers. The signal paths may include optical waveguides formed from optical fibers embedded in the polymer or transparent thin-film layers on the glass layers or other substrates. Openings may be formed in the glass layers to allow signal paths to pass to an electrical component. The electrical component may also be wirelessly coupled to the signal paths.
Abstract:
Aspects of the present disclosure involve a transparent structure. The structure may include at least one light source, a transparent light-carrying guide layer optically coupled with the at least one light source. The structure may include refractive layers where a light absorbing feature is operably associated with the light-carrying guide layer to absorb any light not internally reflected in the light guide layer, at least adjacent the light source.
Abstract:
Aspects of the present disclosure involve a transparent structure. The structure may include at least one light source, a transparent light-carrying guide layer optically coupled with the at least one light source. The structure may include refractive layers where a light absorbing feature is operably associated with the light-carrying guide layer to absorb any light not internally reflected in the light guide layer, at least adjacent the light source.
Abstract:
An electronic device may have electrical components mounted in alignment with an electronic device housing. A compass in the electronic device housing may potentially be misaligned with respect to the electrical components and the electronic device housing. Reference devices having compasses may be used to gather compass data while one or more electrical components in the reference devices are controlled to generate magnetic fields that are detected by the compasses. An electronic device may be calibrated in a factory or in the field using calibration data produced by comparing compass readings gathered from the compass in the device while controlling electrical components in the device to compass data from the reference devices. Calibration data may be applied to compass readings in real time to correct for misalignment between the compass and the electronic device housing.
Abstract:
Disclosed herein are methods for operating a computing device including determining an amount of pressure exerted on a touch-sensitive surface of the computing device. According to the various embodiments, a touch input is received by the touch-sensitive surface. The amount of pressure exerted by the touch input on the touch-sensitive surface is then determined. The computing device operates in a first manner when a first amount of pressure is received and operates in a second manner when a second amount of pressure is received.
Abstract:
Light-based devices may be provided that emit light. The light-based devices may be incorporated into systems such as vehicles. The light-based devices may include light sources such as light-emitting diodes and lasers. Mirrors may be used to collimate light from the light sources. Light modulators may be used to pattern light from the light sources. The light sources may include light sources of different colors. Arrays of pixels may be used to provide dynamically varying patterns of emitted light. A light source may produce light that is diffracted by an array of diffractive elements on a window. Mechanical and electrical shutters may obscure light sources, mirrors, and light-emitting components mounted on windows.
Abstract:
Aspects of the present disclosure involve a transparent structure. The structure may include at least one light source, a transparent light-carrying guide layer optically coupled with the at least one light source. The structure may include refractive layers where a light absorbing feature is operably associated with the light-carrying guide layer to absorb any light not internally reflected in the light guide layer, at least adjacent the light source.
Abstract:
A method for selectively granting access to an access-controlled space includes obtaining an image of the person requesting access using a camera that is located inside the access-controlled space, and permitting an authorized user of the access-controlled space to grant authorization using the image.