Abstract:
An organic light-emitting diode display may have an array of pixels. Each pixel may have an organic light-emitting diode with an anode (44) and cathode (42). The anodes may be formed from a patterned layer of metal. Thin-film transistor circuitry in the pixels may include transistors such as drive transistors (TD) and switching transistors (200). Data lines may supply data signals to the pixels and horizontal control lines may supply control signals to the gates of the transistors. A switching transistor may be coupled between a voltage initialization line (202) and each anode. The voltage initialization lines and capacitor structures in the thin-film transistor circuitry may be formed using a layer of metal that is different than the layer of metal that forms the anodes.
Abstract:
Visibility of the metal mesh touch electrodes can be mitigated using one or more mitigation techniques. In some examples, the boundary between touch electrodes and/or the boundary between a touch electrode and a routing trace of another touch electrode and/or the boundary between two routing traces can be non-linear. In some examples, dummy cuts can be made within an area of a touch electrode region (e.g., while maintaining the same electrical potential for the touch electrode region). In some examples, notches can be made in the metal mesh. In some examples, the location of cuts and/or notches can be optimized to mitigate visibility of the metal mesh. In some examples, some or all of the visibility mitigations may be used in combination in a touch screen.
Abstract:
A display may have an array of organic light-emitting diode display pixels. Each display pixel may have a light-emitting diode that emits light under control of a drive transistor. Each display pixel may also have control transistors for compensating and programming operations. The array of display pixels may have rows and columns. Row lines may be used to apply row control signals to rows of the display pixels. Column lines (data lines) may be used to apply display data and other signals to respective columns of display pixels. A bottom conductive shielding structure may be formed below each drive transistor. The bottom conductive shielding structure may serve to shield the drive transistor from any electric field generated from the adjacent row and column lines. The bottom conductive shielding structure may be electrically floating or coupled to a power supply line.
Abstract:
A display may have an array of organic light-emitting diode display pixels. Each display pixel may have a light-emitting diode that emits light under control of a drive transistor. Each display pixel may also have control transistors for compensating and programming operations. The array of display pixels may have rows and columns. Row lines may be used to apply row control signals to rows of the display pixels. Column lines (data lines) may be used to apply display data and other signals to respective columns of display pixels. A bottom conductive shielding structure may be formed below each drive transistor. The bottom conductive shielding structure may serve to shield the drive transistor from any electric field generated from the adjacent row and column lines. The bottom conductive shielding structure may be electrically floating or coupled to a power supply line.
Abstract:
An electronic device may have a display such as an organic light-emitting diode display. The organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. A first passivation layer, a first planarization layer, and a second passivation layer may be formed over the cathode. The first and second passivation layers may be formed from inorganic material. A second planarization layer may be formed over the second passivation layer between the second passivation layer and a polarizer. The second planarization layer may planarize the polarizer at the edges of the active area of the display where the polarizer would otherwise have a steep taper. Planarizing the polarizer in this way mitigates undesirable secondary reflections off of the polarizer. The first and second planarization layers may be formed from organic material.
Abstract:
Visibility of the metal mesh touch electrodes can be mitigated using one or more mitigation techniques. In some examples, the boundary between touch electrodes and/or the boundary between a touch electrode and a routing trace of another touch electrode and/or the boundary between two routing traces can be non-linear. In some examples, dummy cuts can be made within an area of a touch electrode region (e.g., while maintaining the same electrical potential for the touch electrode region). In some examples, notches can be made in the metal mesh. In some examples, the location of cuts and/or notches can be optimized to mitigate visibility of the metal mesh. In some examples, some or all of the visibility mitigations may be used in combination in a touch screen.
Abstract:
A display may have an array of organic light-emitting diode display pixels. Each display pixel may have a light-emitting diode that emits light under control of a drive transistor. Each display pixel may also have control transistors for compensating and programming operations. The array of display pixels may have rows and columns. Row lines may be used to apply row control signals to rows of the display pixels. Column lines (data lines) may be used to apply display data and other signals to respective columns of display pixels. A bottom conductive shielding structure may be formed below each drive transistor. The bottom conductive shielding structure may serve to shield the drive transistor from any electric field generated from the adjacent row and column lines. The bottom conductive shielding structure may be electrically floating or coupled to a power supply line.